Answer:
0.213 J/g°C
Explanation:
To calculate specific heat of the metal, the formula is used:
Q = m × c × ∆T
Where Q = amount of heat
m = mass
c = specific heat
∆T = change in temperature
According to this question, Q = 37.7 J, m= 12.5 g, initial temperature= 19.5 °C, final temperature = 33.6°C, c=?
Q = m × c × ∆T
37.7 = 12.5 × c × (33.6-19.5)
37.7 = 12.5c × 14.1
37.7 = 176.25c
c = 37.7/176.25
c = 0.2139
Hence, the specific heat of the metal is 0.213 J/g°C
Answer:
You will get 5.0 g of hydrogen.
Explanation:
As with any stoichiometry problem, we start with the balanced equation.
Sn
l
+
2HF
→
SnF
2
+
H
2
Moles of H
2
=
2.5
mol Sn
×
1 mol H
2
1
mol Sn
=
2.5 mol H
2
Mass of H
2
=
2.5
mol H
2
×
2.016 g H
2
1
mol H
2
=
5.0 g H
2
Solution:
After the reaction of mixture is worked-up Washing three times the organic with sodium carbonate helps to decrease the solubility of the organic layer into the aqueous layer. This allows the organic layer to be separated more easily.
And then the reaction washed by saturated NACL we have The bulk of the water can often be removed by shaking or "washing" the organic layer with saturated aqueous sodium chloride (otherwise known as brine). The salt water works to pull the water from the organic layer to the water layer.
First you would multiply 5,3, and 2 to get a volume of 30. Density is mass over volume so you would then divide 129 by 30. You would get 4.3. The answer would be 4.3 g/cm^3
Answer:
A. PO43-
Explanation:
in the given is buffer . so H2PO4- and HPO42- both are present with equal concentration . Na+ is spectator ion it is also present in the concentration higher than the given species above .
but PO4-3 is not present . so it is lowest concentration