-OH is elctron donating -C=-N is electron withdrawing -O-CO-CH3 is electron withdrawing -N(CH3)2 is electron donating -C(CH3)3 is electron donating -CO-O-CH3 is electron withdrawing -CH(CH3)2 is electron donating -NO2 is electrong withdrawing -CH2
Answer:
Mole fraction of methanol will be closest to 4.
Explanation:
Given, Mass of methanol = 128 g
Molar mass of methanol = 32.04 g/mol
The formula for the calculation of moles is shown below:
Thus,
Given, Mass of water = 108 g
Molar mass of water = 18.0153 g/mol
The formula for the calculation of moles is shown below:
Thus,
So, according to definition of mole fraction:

<u>Mole fraction of methanol will be closest to 4.</u>
Answer:
MnO- Manganese Oxide
Explanation:
Empirical formula: This is the formula that shows the ratio of elements
present in a
compound.
How to determine Empirical formula
1. First arrange the symbols of the elements present in the compound
alphabetically to determine the real empirical formula. Although, there
are exceptions to this rule, E.g H2So4
2. Divide the percentage composition by the mass number.
3. Then divide through by the smallest number.
4. The resulting answer is the ratio attached to the elements present in
a compound.
Mn O
% composition 72.1 27.9
Divide by mass number 54.94 16
1.31 1.74
Divide by the smallest number 1.31 1.31
1 1.3
The resulting ratio is 1:1
Hence the Empirical formula is MnO, Manganese oxide
S, sulfur does not have a noble gas electron.
Answer:
2.4 ×10^24 molecules of the herbicide.
Explanation:
We must first obtain the molar mass of the compound as follows;
C3H8NO5P= [3(12) + 8(1) + 14 +5(16) +31] = [36 + 8 + 14 + 80 + 31]= 169 gmol-1
We know that one mole of a compound contains the Avogadro's number of molecules.
Hence;
169 g of the herbicide contains 6.02×10^23 molecules
Therefore 669.1 g of the herbicide contains 669.1 × 6.02×10^23/ 169 = 2.4 ×10^24 molecules of the herbicide.