<span>Germanium is the element that has 32 protons in its nucleus.</span>
The first step in the reaction is the double bond of the Alkene going after the H of HBr. This protonates the Alkene via Markovnikov's rule, and forms a carbocation. The stability of this carbocation dictates the rate of the reaction.
<span>So to solve your problem, protonate all your Alkenes following Markovnikov's rule, and then compare the relative stability of your resulting carbocations. Tertiary is more stable than secondary, so an Alkene that produces a tertiary carbocation reacts faster than an Alkene that produces a secondary carbocation.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>
To solve this we use the
equation,
M1V1 = M2V2
where M1 is the concentration of the stock solution, V1 is the
volume of the stock solution, M2 is the concentration of the new solution and
V2 is its volume.
14 M x V1 = 4.20 M x 200 mL
V1 = 60 mL needed of the concentrated solution
Answer: Non polar solvents
Explanation:
Since with increasing the size of alkyl group hydrophobic nature increases and solubility in polar solvents decreases .
Hence Carboxylic acids with more than 10 carbon atoms, solubility is more in non polar solvents.
<em>Answer:</em>
The equlibrium concentration sof Ca+2 ion willl be 4.9×10∧-3 M
<em>Data Given:</em>
Ksp of CaSO4 = 2.4 × 10∧-5
CaSO4 ⇔ Ca+2 + SO4∧-2
<em>Solution:</em>
Ksp = [Ca+2].[ SO4∧-2]
2.4 × 10∧-5 = [x].[x]= x²
x = 4.9×10∧-3 M
<em>Result:</em>
- The conc. of Ca+2 ion is 4.9×10∧-3 M