Answer:
Explanation:
Here we have the mass of CO₂ added = 340 g
From

We have, where the molar mass of CO₂ is 44.01 g/mol
Therefore,

71. Included drawing attached
72. Here we have the pressure of the gas given by Charles law which can be resented as follows;

Where:
P₁ = Initial pressure = 6.1 atmospheres
P₂ = Final pressure
T₁ = Initial Temperature = 293 K
T₂ = Initial Temperature = 313 K
Therefore,

Dilution<span> is when you decrease the concentration of a </span>solution<span> by adding a solvent. As a result, if you want to </span>dilute<span> salt water, just add water. ... Add more solute until it quits dissolving. That point at which a solute quits dissolving is the point at which it's </span>saturated<span>.</span>
Answer : The molarity of solution is, 1.00 M
Explanation : Given,
Moles of
= 0.500 mol
Volume of solution = 0.500 L
Molarity : It is defined as the number of moles of solute present in one liter of volume of solution.
Formula used :

Now put all the given values in this formula, we get:

Therefore, the molarity of solution is, 1.00 M
"You may find what you seek, or you might not" Is an excellent quote that might help.
Answer:
MnO- Manganese Oxide
Explanation:
Empirical formula: This is the formula that shows the ratio of elements
present in a
compound.
How to determine Empirical formula
1. First arrange the symbols of the elements present in the compound
alphabetically to determine the real empirical formula. Although, there
are exceptions to this rule, E.g H2So4
2. Divide the percentage composition by the mass number.
3. Then divide through by the smallest number.
4. The resulting answer is the ratio attached to the elements present in
a compound.
Mn O
% composition 72.1 27.9
Divide by mass number 54.94 16
1.31 1.74
Divide by the smallest number 1.31 1.31
1 1.3
The resulting ratio is 1:1
Hence the Empirical formula is MnO, Manganese oxide