This is an incomplete question, here is a complete question.
If the initial concentration of NOBr is 0.0440 M, the concentration of NOBr after 9.0 seconds is ________.
The reaction

It is a second-order reaction with a rate constant of 0.80 M⁻¹s⁻¹ at 11 °C.
Answer : The concentration of after 9.0 seconds is, 0.00734 M
Explanation :
The integrated rate law equation for second order reaction follows:
![k=\frac{1}{t}\left (\frac{1}{[A]}-\frac{1}{[A]_o}\right)](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B1%7D%7Bt%7D%5Cleft%20%28%5Cfrac%7B1%7D%7B%5BA%5D%7D-%5Cfrac%7B1%7D%7B%5BA%5D_o%7D%5Cright%29)
where,
k = rate constant = 0.80 M⁻¹s⁻¹
t = time taken = 142 second
[A] = concentration of substance after time 't' = ?
= Initial concentration = 0.0440 M
Putting values in above equation, we get:
![0.80M^{-1}s^{-1}=\frac{1}{142s}\left (\frac{1}{[A]}-\frac{1}{(0.0440M)}\right)](https://tex.z-dn.net/?f=0.80M%5E%7B-1%7Ds%5E%7B-1%7D%3D%5Cfrac%7B1%7D%7B142s%7D%5Cleft%20%28%5Cfrac%7B1%7D%7B%5BA%5D%7D-%5Cfrac%7B1%7D%7B%280.0440M%29%7D%5Cright%29)
![[A]=0.00734M](https://tex.z-dn.net/?f=%5BA%5D%3D0.00734M)
Hence, the concentration of after 9.0 seconds is, 0.00734 M
Answer:
454.3 g.
Explanation:
1.0 mol of CaO liberates → – 64.8 kJ.
??? mol of CaO liberates → - 525 kJ.
∴ The no. of moles needed = (1.0 mol)(- 525 kJ)/(- 64.8 kJ) = 8.1 mol.
<em>∴ The no. of grams of CaO needed = no. of moles x molar mass</em> = (8.1 mol)(56.077 g/mol) = <em>454.3 g.</em>
<u>Answer:</u> The wavelength of light is 
<u>Explanation:</u>
To calculate the wavelength of light, we use Rydberg's Equation:

Where,
= Wavelength of radiation
= Rydberg's Constant = 
= Final energy level = 3
= Initial energy level = 6
Putting the values in above equation, we get:

Hence, the wavelength of light is 
Answer:
MnO- Manganese Oxide
Explanation:
Empirical formula: This is the formula that shows the ratio of elements
present in a
compound.
How to determine Empirical formula
1. First arrange the symbols of the elements present in the compound
alphabetically to determine the real empirical formula. Although, there
are exceptions to this rule, E.g H2So4
2. Divide the percentage composition by the mass number.
3. Then divide through by the smallest number.
4. The resulting answer is the ratio attached to the elements present in
a compound.
Mn O
% composition 72.1 27.9
Divide by mass number 54.94 16
1.31 1.74
Divide by the smallest number 1.31 1.31
1 1.3
The resulting ratio is 1:1
Hence the Empirical formula is MnO, Manganese oxide