answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
puteri [66]
2 years ago
6

Determine the number of moles and mass requested for each reaction in Exercise 4.42.

Chemistry
1 answer:
suter [353]2 years ago
5 0

Answer:

(a) 0.22 mol Cl₂ and 15.4g Cl₂

(b) 2.89.10⁻³ mol O₂ and 0.092g O₂

(c) 8 mol NaNO₃ and 680g NaNO₃

(d) 1,666 mol CO₂ and 73,333 g CO₂

(e) 18.87 CuCO₃ and 2,330g CuCO₃

Explanation:

In most stoichiometry problems there are a few steps that we always need to follow.

  1. Step 1: Write the balanced equation
  2. Step 2: Establish the theoretical relationship between the kind of information we have and the one we are looking for. Those relationships can be found in the balanced equation.
  3. Step 3: Apply conversion factor/s to the data provided in the task based on the relationships we found in the previous step.

(a)

Step 1:

2 Na + Cl₂ ⇄ 2 NaCl

Step 2:

In the balanced equation there are 2 moles of Na, thus 2 x 23g = 46g of Na. <u>46g of Na react with 1 mol of Cl₂</u>. Since the molar mass of Cl₂ is 71g/mol, then <u>46g of Na react with 71g of Cl₂</u>.

Step 3:

10.0gNa.\frac{1molCl_{2} }{46gNa} =0.22molCl_{2}

10.0gNa.\frac{71gCl_{2}}{46gNa} =15.4gCl_{2}

(b)

Step 1:

HgO ⇄ Hg + 0.5 O₂

Step 2:

<u>216.5g of HgO</u> form <u>0.5 moles of O₂</u>. <u>216.5g of HgO</u> form <u>16g of O₂</u>.

Step 3:

1.252gHgO.\frac{0.5molO_{2}}{216.5gHgO} =2.89.10^{-3} molO_{2}

1.252gHgO.\frac{16gO_{2}}{216.5gHgO} =0.092gO_{2}

(c)

Step 1:

NaNO₃ ⇄ NaNO₂ + 0.5 O₂

Step 2:

<u>16g of O₂</u> come from <u>1 mol of NaNO₃</u>. <u>16g of O₂</u> come from <u>85g of NaNO₃</u>.

Step 3:

128gO_{2}.\frac{1molNaNO_{3}}{16gO_{2}} =8mol NaNO_{3}

128gO_{2}.\frac{85gNaNO_{3}}{16gO_{2}} =680gNaNO_{3}

(d)

Step 1:

C + O₂ ⇄ CO₂

Step 2:

<u>12 g of C</u> form <u>1 mol of CO₂</u>. <u>12 g of C</u> form <u>44g of CO₂</u>.

Step 3:

20.0kgC.\frac{1,000gC}{1kgC} .\frac{1molCO_{2}}{12gC} =1,666molCO_{2

[tex]20.0kgC.\frac{1,000gC}{1kgC} .\frac{44gCO_{2}}{12gC} =73,333gCO_{2[/tex]

(e)

Step 1:

CuCO₃ ⇄ CuO + CO₂

Step 2:

<u>79.5g of CuO</u> come from <u>1 mol of CuCO₃</u>. <u>79.5g of CuO</u> come from <u>123.5g of CuCO₃</u>.

Step 3:

1.500kgCuO.\frac{1,000gCuO}{1kgCuO} .\frac{1mol CuCO_{3}}{79.5gCuO} =18.87molCuCO_{3}\\ 1.500kgCuO.\frac{1,000gCuO}{1kgCuO} .\frac{123.5g CuCO_{3}}{79.5gCuO} =2,330gCuCO_{3}

You might be interested in
The graph shows the distribution of energy in the particles of two gas samples at different temperatures, T1 and T2. A, B, and C
coldgirl [10]

Answer:

  • <u><em>The average speed of gas particles at T</em></u><em><u>₂</u></em><u><em> is lower than the average speed of gas particles at T</em></u><em><u>₁</u></em><u><em>.</em></u>

Explanation:

<em>Particles A and C</em> are shown as if they are on the same vertical line, which means with the same kinetic energy. Both particle A and C are to the lett of <em>particle B</em>, which means that the formers have a lower kinetic energy than the latter.

Since the likelyhood of a particle to participate in the reaction increases with the kinetic energy, particle B is more likely to participate in the reaction than particles A and C. Hence, the first choice is incorrect.

The graph, although not perfectly symmetrical, does show a bell shape, hence there are many particles will low kinetic energy and many particles with high kinetic energy. You cannot assert that most of the particles of the two gases have high high speeds. Hence, second statement is incorrect, too.

At high values of kinetic energy (toward the right of the curve), the line labeled T₁ is higher than the line labeled T₂, meaning that at T₁ more particles have an elevated kinetic energy than the number of particles that have an elevated kinetic energy at T₂.

On the other hand, at low values of kinetic energy (toward the left of the curve) the line T₂ is higher than the line T₁, meaning that at T₂ more particles have a low kinetic energy than the number of particles that have low kinetic energy at T₁.

Hence, the last two paragraphs are telling that the average kinetic energy of gas particles at T₂ is is lower than the average kinetic energy of gas particles at T₁.

Since the average speed is proportional the the square root of the temperature, the same trend for the average kinetic energy is true for the average speed, and you conclude that the last statement is true: "The average speed of gas particles at T₂ is lower than the average speed of gas particles at T₁".

Since more particles at T₁ have high kinetic energy than the number of particles at T₂ that have a high kinetic energy, more particles of gas at T₁ are likely to participate in the reaction  than the gas at T₂, and the third statement is incorrect.

7 0
2 years ago
The temperature of the carbon dioxide atmosphere near the surface of venus is 475°c. calculate the average kinetic energy per mo
harkovskaia [24]
Answer: <span>9330 j/mol
</span>
The temperature of the gas is 475 ° Celcius which is equal to: 475 +273= 748 °K. The formula for kinetic energy of individual atoms would be

K= 3/2 * kB * T
If kB is 1.38 * 10^-23 J/K and 1 mol is made from 6.02*10^23 molecule, then the kinetic energy of 1 mol CO2 would be:
K= 3/2 * kB * T
K= 3/2 * 1.38 * 10^-23  * 748 * 6.02 *10^23 =9324 J/mol
8 0
2 years ago
Suggest why sodium and hydrogen ions do not diffuse at the same rate
Troyanec [42]

Answer:

sodium has got ionic bonds that are weak

compared to hydrogen covalent bonds that are strong

8 0
2 years ago
When salt is introduced to water, the temperature at which freezing occurs is?
Vladimir [108]
28.4 degrees fahrenheit
5 0
2 years ago
Under identical conditions of temperature, number of moles, and pressure, which of the following gases has the highest density:
sergey [27]
<span>The higher the molar mass is of the gas, the greater the density.

Cl2 is the answer</span>
6 0
2 years ago
Read 2 more answers
Other questions:
  • Which statement explains why nuclear waste materials may pose aproblem?(1) They frequently have short half-lives and remain radi
    7·2 answers
  • Which volume, in cm3 , of 0.20 mol dm-3 naoh (aq) is needed to neutralize 0.050 mol of h2s (g)? h2s (g) + 2naoh (aq) → na2s (aq)
    13·1 answer
  • A metal slug weighing 25.17g is added to a flask with a volume of 59.7mL. It is found that 44.7 g of methanol must be added to t
    14·1 answer
  • A student assistant is cleaning up after a chemistry laboratory exercise and finds three one-liter bottles containing alcohol so
    15·1 answer
  • What pressure does 3.54 moles of chlorine gas at 376 k exert on the walls of it 51.2 l container? I'm Lazy sooooo
    5·1 answer
  • How many liters of CO2 are in 4.76 moles? (at STP)
    9·1 answer
  • If the manta ray gets 50 kcal of energy by eating the starfish, how much energy does the clam get from eating the plankton?
    8·2 answers
  • What volume of 0.500 M HNO₃(aq) must completely react to neutralize 100.0 milliliters of 0.100 M KOH(aq)?
    8·1 answer
  • compare the C2-C3 bonds in propane,propene, and propane.Should they be any different with respect to either bond length or bond
    7·1 answer
  • The volume of a gas is decreased from 100 liters at 173.0°C to 50 liters at a constant pressure. After the decrease in volume, w
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!