Answer:
The balanced equation tells us that 1 mole of Zn will produce 1 mole of H2.
1.566 g Zn x (1 mole Zn / 65.38 g Zn) = 0.02395 moles Zn
0.02395 moles Zn x (1 mole H2 / 1 mole Zn) = 0.02395 moles H2 produced
Now use the ideal gas law to find the volume V.
P = 733 mmHg x (1 atm / 760 atm) = 0.964 atm
T = 21 C + 273 = 294 K
PV = nRT
V = nRT/ P = (0.02395 moles H2)(0.0821 L atm / K mole)(294 K) / (0.964 atm) = 0.600 L
To help, I drew a diagram. This represents an ionic bond between Na and Cl. Na is giving his single electron to Cl, which is indicated by the arrow, to make Cl full with 8 electrons.
The force on the wall is actually the pressure exerted by gas molecules
Higher the pressure more the force exerted on the walls of container
The pressure depends upon the number of molecules of a gas
In a mixture of gas the pressure depends upon the mole fraction of the gas
As given the mole fraction of He is more than that of H2 therefore He will exert more pressure on the wall
The ratio of impact will be
H2 / He = 2/3 / 1/3 = 2: 1
Answer:
Without dark matter galaxies would loose an extreme amount of gas required to create stars.
Without dark matter the universe wont have as many galaxies clumped together forming larger versions of those galaxies. This would cause a change in the structure of the "skeleton" of the web.
(Hope this can help, I didn't do exactly as it is said to because that is your job)
:)
Explanation:
Forbes gives somewhat of an explanation if you are curious.
(Ethan Siegal, "The Universe Would Be Very Different Without Dark Matter", Forbes)
HCl Acid + Sodium Hydroxide ----> Sodium Chloride + water.
<u>Explanation</u>:
- The reaction between an acid and a base is known as a neutralization reaction. The reaction of an acid with a base to give salt, water and heat is called neutralization.
- When hydrochloric acid reacts with sodium hydroxide, sodium chloride and water are produced.
HCl + NaOH → NaCl + H2O + Heat
- The heat evolved in the neutralization reaction raises the temperature of the reaction mixture.
- An electro-electrodialysis process (EED) is utilized to create HCl and NaOH from exchange NaCl. NaOH and HCl arrangements with purity higher than 99.9% are acquired. The experimental estimations of the transitions for HCl and NaOH are contrasted and values determined from the incorporation of the Nernst–Planck electro dispersion conditions.