Ans: The final volume of the balloon is 4.5 L
<u>Given:</u>
Volume of balloon inflated with 3 breaths = 1.7 L
<u>To determine:</u>
Volume of balloon after a total of 3+5 = 8 breaths
<u>Explanation:</u>
Volume of the balloon per breath = 1.7 L * 1 breath/3 breaths = 0.567 L
Final volume of balloon after 8 breaths = 0.567 L * 8 breath/1 breath
= 4.536 L
<h3>
Answer:</h3>
1 x 10^13 stadiums
<h3>
Explanation:</h3>
We are given that;
1 stadium holds = 1 × 10^5 people
Number of iron atoms is 1 × 10^18 atoms
Assuming the stadium would carry an equivalent number of atoms as people.
Then, 1 stadium will carry 1 × 10^5 atoms
Therefore,
To calculate the number of stadiums that can hold 1 × 10^18 atoms we divide the total number of atoms by the number of atoms per stadium.
Number of stadiums = Total number of atoms ÷ Number of atoms per stadium
= 1 × 10^18 atoms ÷ 1 × 10^5 atoms/stadium
= 1 × 10^13 Stadiums
Thus, 1 × 10^18 atoms would occupy 1 × 10^13 stadiums
Answer:
The rms speed of the gas atoms after 3600 J of heat energy is added to the gas = 1150 m/s.
Explanation:
Mass of 3 moles of Helium = 3 moles × 4.00 g/mol = 12.00 g = 0.012 kg
The initial average kinetic energy of the helium atoms = (1/2)(m)(u²)
where u = initial rms speed of the gas = 850 m/s
Initial average kinetic energy of the gas = (1/2)(0.012)(850²) = 4335 J
Then, 3600 J is added to the gas,
New kinetic energy of the gas = 4335 + 3600 = 7935 J
New kinetic energy of Helium atoms = (1/2)(m)(v²)
where v = final rms speed of the gas = ?
7935 = (1/2)(0.012)(v²)
v² = (7935×2)/0.012
v² = 1,322,500
v = 1150 m/s
Hence, the rms speed of the gas atoms after 3600 J of heat energy is added to the gas = 1150 m/s.
Hope this Helps!!!
Ksp of AgCl= 1.6×10⁻¹⁰
AgCl=Ag⁺ +Cl⁻
Ksp=[Ag⁺][Cl⁻]
Assume [Ag⁺]=[Cl⁻]=x
Ksp=x²
1.6×10⁻¹⁰=x²
x=0.000012
In FeCl₃:
FeCl₃------>Fe⁺³+ 3Cl⁻
as there is 0.010 M FeCl₃
So there will be ,
[Cl⁻]= 0.030
So
[Ag⁺]=Ksp/[Cl⁻]
=1.6×10⁻¹⁰/0.030
=5.3×10⁻⁹
so solubility of AgCl in FeCl₃ will be 5.3×10⁻⁹.
The answer would A. Sand grain I got 100 on the sedimentary assignment.