To counter the removal of A the equilibrium change by <u>s</u><em>hifting toward the left</em>
<em> </em><u><em>explanation</em></u>
<u><em> </em></u>If the reaction is at equilibrium and we alter the condition a new equilibrium state is created
<u><em> </em></u>The removal of A led to the shift of equilibrium toward the left since it led to less molecules in reactant side which favor the backward reaction.( equilibrium shift to the left)
Hey there!:
Molar mass Ca(NO2)2 = 132.089 g/mol
Mass of solute = 120 g
Number of moles:
n = mass of solute / molar mass
n = 120 / 132.089
n = 0.0009084 moles of Ca(NO2)2
Volume in liters of solution :
240 mL / 1000 => 0.24 L
Therefore:
Molarity = number of moles / volume of solution
Molarity = 0.0009084 / 0.24
Molarity = 0.003785 M
Hope that helps!
The Structure of Glycine is attached below and each central atom is encircled with different colors.
Molecular Shape around Nitrogen Atom (Orange):
As shown, Nitrogen is making three single bonds with two hydrogen atoms and one carbon atom hence, it has three bonded pair electrons and a single lone pair of electron. Therefore, according to VSEPR theory it has a tetrahedral electronic geometry but due to repulsion created by lone pair of electrons its molecular geometry becomes Trigonal Pyramidal.
Molecular Shape around Carbon Atom (Green):
As shown, Carbon is making four single bonds with two hydrogen atoms and one nitrogen atom one with carbon atom of carbonyl group hence, it has four bonded pair electrons. Therefore, according to VSEPR theory it has Tetrahedral geometry.
Molecular Shape around Carbon Atom (Blue):
As shown, Carbon is making two single bonds with oxygen and carbon atoms and a double bond with oxygen. Hence, it has a Trigonal Planar geometry.
Molecular Shape around Oxygen Atom (Red):
As shown, Oxygen is making two single bonds with one carbon atoms and one hydrogen atom hence, it has two bonded pair electrons and two lone pair of electrons. Therefore, according to VSEPR theory it has a tetrahedral electronic geometry but due to repulsion created by lone pair of electrons its molecular geometry becomes Bent.
<span>The element that is used in light bulbs as a filament is tungsten - this is almost always the case in halogen and incandescent bulbs. Tungsten is chosen for this purpose because of the fact it can withstand temperatures of up to 4,500 degrees, as well as being incredibly flexible.</span>
Answer:
d.) Microwave photons cause the molecules to increase their rotational energy states, whereas infrared photons cause electrons in the molecules to increase their electronic energy states.
Explanation:
Microwave: transitions in the molecular rotational levels
Infrared: transitions in molecular vibrational levels
UV/Visible: transitions in electronic energy levels.