Usually concentrations are expressed as molarity, or moles of solute per liter solution. First, convert the mass of bromide ion to moles. The molar mass of bromine is 79.904 g/mol.
Moles of bromine = 65 mg * 1 g/1000 mg * 1 mol/79.904 g = 8.135×10⁻⁴ moles
Next, convert the mass of seawater to volume using the density.
Volume of seawater = 1 kg * 1 m³/ 1,025 kg * 1000 L/1 m³ = 0.976 L
Thus,
Molarity = 8.135×10⁻⁴ moles/0.976 L = 8.335×10⁻⁴ M
<span>n this order, Ď=1.8gmL, cm=0.5, and mole fraction = 0.9
First, let's start with wt%, which is the symbol for weight percent. 98wt% means that for every 100g of solution, 98g represent sulphuric acid, H2SO4.
We know that 1dm3=1L, so H2SO4's molarity is
C=nV=18.0moles1.0L=18M
In order to determine sulphuric acid solution's density, we need to find its mass; H2SO4's molar mass is 98.0gmol, so
18.0moles1Lâ‹…98.0g1mole=1764g1L
Since we've determined that we have 1764g of H2SO4 in 1L, we'll use the wt% to determine the mass of the solution
98.0wt%=98g.H2SO4100.0g.solution=1764gmasssolution→
masssolution=1764gâ‹…100.0g98g=1800g
Therefore, 1L of 98wt% H2SO4 solution will have a density of
Ď=mV=1800g1.0â‹…103mL=1.8gmL
H2SO4's molality, which is defined as the number of moles of solute divided by the mass in kg of the solvent; assuming the solvent is water, this will turn out to be
cm=nH2SO4masssolvent=18moles(1800â’1764)â‹…10â’3kg=0.5m
Since mole fraction is defined as the number of moles of one substance divided by the total number of moles in the solution, and knowing the water's molar mass is 18gmol, we could determine that
100g.solutionâ‹…98g100gâ‹…1mole98g=1 mole H2SO4
100g.solutionâ‹…(100â’98)g100gâ‹…1mole18g=0.11 moles H2O
So, H2SO4's mole fraction is
molefractionH2SO4=11+0.11=0.9</span>
The element is Am and since you lose e- there must be a postive charge. Am+6 is the symbol
Percent composition by mass is calculated (mass of element within compound)/(mass of compound)*100. The lower the total molar mass of the compound, the greater the percent composition of sulfur. In this case, MgS would be that compound, since Mg has the lowest molar mass of the four elements bonded to S.
Given:
Mass of methanol, m = 18754 kg
Density of methanol, ρ = 0.788 g/cm³
By definition, the volume of methanol in the collection tank is
Volume = mass/density

Answer: 2.38 x 10⁷ g/cm³