Answer:
See the explanation
Explanation:
1) The Lewis structure for
has a central Carbon<em> </em>atom attached to Oxygen atoms.
In the
we will have a structure: O=C=O the <u>central atom</u> "carbon" we will have <u>2 sigma bonds and 2 pi bonds</u>, therefore, we have an <u>Sp hybridization</u>. For O we have <u>1 pi and 1 sigma bond</u>, therefore, we have an <u>Sp2 hybridization</u>.
2) These atoms are held together by <u>double bonds.</u>
<u></u>
Again in the structure of
: O=C=O we only have double bonds.
3. Carbon dioxide has a Carbon dioxide has a <u>Linear</u> electron geometry.
Due to the double bonds we have to have a linear structure because in this geometry the atoms will be further apart from each other.
4. The carbon atom is <u>Sp</u> hybridized.
We will have for carbon 2 pi bonds, so we will have an <u>Sp</u> hybridization.
5. Carbon dioxide has two Carbon dioxide has two C(p) - O(p) π bonds and two C(sp) - O(Sp2) σ bonds.
(See figures)
Figure 1: Carbon hybridization
Figure 2: Oxygen hybridization
Answer:
The open system evaporates the solvent in the solution
Explanation:
An open system is a system in which exchange of materials and energy can occur. If a TLC set up is left open, then the set up constitutes an open system.
During TLC, the sample is dotted on the plate and inserted into a suitable solvent. The solvent moves up the plate and achieves the required separation of the mixture.
Most of these solvents used used TLC are volatile organic compounds. Therefore, if the TLC set up is left open, the solvent will evaporate leading to poor results after running the TLC experiment.
Answer:
Ag⁺ (aq) + I¯ (aq) —> AgI (s)
Explanation:
We'll begin by writing the dissociation equation for aqueous AgNO₃ and KI.
Aqueous AgNO₃ and KI will dissociate in solution as follow:
AgNO₃ (aq) —> Ag⁺(aq) + NO₃¯ (aq)
KI (aq) —> K⁺(aq) + I¯(aq)
Aqueous AgNO₃ and KI will react as follow:
AgNO₃ (aq) + KI (aq) —>
Ag⁺(aq) + NO₃¯ (aq) + K⁺ (aq) + I¯(aq) —> AgI (s) + K⁺ (aq) + NO₃¯ (aq)
Cancel out the spectator ions (i.e ions that appears on both sides of the equation) to obtain the net ionic equation. The spectator ions are K⁺ and NO₃¯.
Thus, the net ionic equation is:
Ag⁺ (aq) + I¯ (aq) —> AgI (s)
That depends. What kind of change are you talking about? But
Mass<span> through chemical </span>change<span> stays the same as well. Example: burning paper, the ash left behind is not all of the </span>mass<span> of the reactants, Carbon dioxide, and other </span>substances<span> also makeup</span>mass<span> but just is not seen
</span>
Answer:
0.185moles of Al₂O₃
Explanation:
Mass of Al = 10g
Mass of O₂ = 19g
Equation of the reaction: 4Al + 3O₂ → 2Al₂O₃
This is the balanced reaction equation.
Solution
From the given parameters, the reactant that would determine the extent of the reaction is Aluminium. It is called the limiting reagent. Oxygen is in excess and it is in an unlimited supply.
Working from the known mass to the unknown, we simply solve for the number of moles of Al using the mass given.
Then from the equation, we can relate the number of moles of Al to that of Al₂O₃ produced:
Number of moles of Al = 
= 
= 0.37mol
From the equation:
4 moles of Al produced 2 moles of Al₂O₃
0.37 mole will yield:
= 0.185moles of Al₂O₃