Answer: 1.Stars are born in clouds of gas and dust called nebulas.
2.The gas and dust are pulled together by gravity.
3.Heat and pressure cause nuclear fusion, which signals the birth of a star.
Explanation:
Answer:
B 1.23 g/cc
Explanation:
For something to float on seawater, the density must be less than 1.03 g/mL. If the object sinks, the density is greater than 1.03 g/mL.
Let’s examine the answer choices. Keep in mind, the ice berg is mostly below the water level.
A. 0.88 g/cc
This is less than 1.03 g/cc, which would result in floating.
B. 1.23 g/cc
This is the best answer choice. The iceberg is mostly beneath the water, but some of it is exposed. The density is greater than 1.03 g/mL, but not so much greater that it would immediately sink.
C. 0.23 g/cc
This is less than 1.03 g/cc, which would produce floating.
D. 4.14 g/cc
This is much greater than 1.03 g/cc and the result would be sinking.
Answer:
The cuvette was blank with the solution so that the spectrometer will only read the solute absorbance. This also ensures that the spectrometer will ignore other absorbance fluctuations that normally occur due to the chemical make-up of water. The spectrometer only considered the absorbance of
as indicated on the spectrum. The reaction between the
and the
are both clear liquids that form the orange liquid product
which creates the absorbance spectrum. Because the color of the solution is orange, it reflects this and similar colors while absorbing blueish hues. We can find the absorption of only the
by pre-rinsing the cuvette with each solution we intend to measure before placing it in the spectrometer. Also, wipe each cuvette with a kimwipe to remove all fingerprints that could effect the data collection.
Explanation:
The cuvette was blank with the solution so that the spectrometer will only read the solute absorbance. This also ensures that the spectrometer will ignore other absorbance fluctuations that normally occur due to the chemical make-up of water. The spectrometer only considered the absorbance of
as indicated on the spectrum.
Answer:
On the opposite side of the rock.
Explanation: