Displacement = √(3² + 4²)
Displacement = 5 meters north east
Velocity = displacement / time
Velocity = 5 / 35
Velocity = 0.14 m/s northeast
Explanation:
The given data is as follows.
Moles of propylene = 100 moles,
= 300 K
= 800 K,
,
of propylene = 100 J/mol
Now, we assume the following assumptions:
Since, it is a compression process therefore, work will be done on the system. And, work done will be equal to the heat energy liberating without any friction.
W = 

= 
= 5 MJ
Thus, we can conclude that a minimum of 5 MJ work is required without any friction.
Answer:
b
Explanation:
The reaction that is not a displacement reaction from all the options is 
In a displacement reaction, a part of one of the reactants is replaced by another reactant. In single displacement reactions, one of the reactants completely displaces and replaces part of another reactant. In double displacement reaction, cations and anions in the reactants switch partners to form products.
<em>Options a, c, d, and e involves the displacement of a part of one of the reactants by another reactant while option b does not.</em>
Correct option = b.
Answer :
Lewis-dot structure : It shows the bonding between the atoms of a molecule and it also shows the unpaired electrons present in the molecule. The electrons are represented by dot.
The given molecule is, perbromate ion.
Bromine has '7' valence electrons and oxygen has '6' valence electron.
Therefore, the total number of valence electrons in perbromate ion,
= 7 + 4(6) + 1 = 32
According to Lewis-dot structure, there are 14 number of bonding electrons and 18 number of non-bonding electrons.
Formula for formal charge :

The Lewis-dot structure of perbromate ion is shown below.
Hi, you have not provided structure of the aldehyde and alkoxide ion.
Therefore i'll show a mechanism corresponding to the proton transfer by considering a simple example.
Explanation: For an example, let's consider that proton transfer is taking place between a simple aldehyde e.g. acetaldehyde and a simple alkoxide base e.g. methoxide.
The hydrogen atom attached to the carbon atom adjacent to aldehyde group are most acidic. Hence they are removed by alkoxide preferably.
After removal of proton from aldehyde, a carbanion is generated. As it is a conjugated carbanion therefore the negative charge on carbon atom can conjugate through the carbonyl group to form an enolate which is another canonical form of the carbanion.
All the structures are shown below.