Answer:
![\mathbf{s =\sqrt [3]{\dfrac{K_{sp}}{4}}}](https://tex.z-dn.net/?f=%5Cmathbf%7Bs%20%3D%5Csqrt%20%5B3%5D%7B%5Cdfrac%7BK_%7Bsp%7D%7D%7B4%7D%7D%7D)
Less than the concentration of Pb2+(aq) in the solution in part ( a )
Explanation:
From the question:
A)
We assume that s to be the solubility of PbI₂.
The equation of the reaction is given as :
PbI₂(s) ⇌ Pb²⁺(aq) + 2I⁻(aq); Ksp = 7 × 10⁻⁹
[Pb²⁺] = s
Then [I⁻] = 2s
![K_{sp} =\text{[Pb$^{2+}$][I$^{-}$]}^{2} = s\times (2s)^{2} = 4s^{3}\\s^{3} = \dfrac{K_{sp}}{4}\\\\s =\mathbf{ \sqrt [3]{\dfrac{K_{sp}}{4}}}\\\\\text{The mathematical expressionthat can be used to determine the value of }\mathbf{s =\sqrt [3]{\dfrac{K_{sp}}{4}}}](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%5Ctext%7B%5BPb%24%5E%7B2%2B%7D%24%5D%5BI%24%5E%7B-%7D%24%5D%7D%5E%7B2%7D%20%3D%20s%5Ctimes%20%282s%29%5E%7B2%7D%20%3D%20%204s%5E%7B3%7D%5C%5Cs%5E%7B3%7D%20%3D%20%5Cdfrac%7BK_%7Bsp%7D%7D%7B4%7D%5C%5C%5C%5Cs%20%3D%5Cmathbf%7B%20%5Csqrt%20%5B3%5D%7B%5Cdfrac%7BK_%7Bsp%7D%7D%7B4%7D%7D%7D%5C%5C%5C%5C%5Ctext%7BThe%20mathematical%20expressionthat%20can%20be%20used%20to%20determine%20the%20value%20of%20%20%7D%5Cmathbf%7Bs%20%3D%5Csqrt%20%5B3%5D%7B%5Cdfrac%7BK_%7Bsp%7D%7D%7B4%7D%7D%7D)
B)
The Concentration of Pb²⁺ in water is calculated as :
![\mathbf{s =\sqrt [3]{\dfrac{K_{sp}}{4}}}](https://tex.z-dn.net/?f=%5Cmathbf%7Bs%20%3D%5Csqrt%20%5B3%5D%7B%5Cdfrac%7BK_%7Bsp%7D%7D%7B4%7D%7D%7D)
![\mathbf{s =\sqrt [3]{\dfrac{7*10^{-9}}{4}}}](https://tex.z-dn.net/?f=%5Cmathbf%7Bs%20%3D%5Csqrt%20%5B3%5D%7B%5Cdfrac%7B7%2A10%5E%7B-9%7D%7D%7B4%7D%7D%7D)
![\mathbf{s} =\sqrt[3]{1.75*10^{-9}}](https://tex.z-dn.net/?f=%5Cmathbf%7Bs%7D%20%3D%5Csqrt%5B3%5D%7B1.75%2A10%5E%7B-9%7D%7D)

The Concentration of Pb²⁺ in 1.0 mol·L⁻¹ NaI




The equilibrium constant:
![K_{sp} =[Pb^{2+}}][I^-]^2 \\ \\ K_{sp} = s*(1.0*2s)^2 =7*1.0^{-9} \\ \\ s = 7*10^{-9} \ \ m/L](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%5BPb%5E%7B2%2B%7D%7D%5D%5BI%5E-%5D%5E2%20%5C%5C%20%5C%5C%20K_%7Bsp%7D%20%3D%20s%2A%281.0%2A2s%29%5E2%20%3D7%2A1.0%5E%7B-9%7D%20%5C%5C%20%5C%5C%20s%20%3D%207%2A10%5E%7B-9%7D%20%5C%20%5C%20%20m%2FL)
It is now clear that maximum possible concentration of Pb²⁺ in the solution is less than that in the solution in part (A). This happens due to the common ion effect. The added iodide ion forces the position of equilibrium to shift to the left, reducing the concentration of Pb²⁺.
Answer is: A. 1.81 mol.
Balanced chemical reaction: FeCl₂ + 2KOH → Fe(OH)₂ + 2KCl.
n(FeCl₂) = 4.15 mol; amount of iron(II) chloride.
n(KOH) = 3.62 mol; amount of potassium hydroxide, limiting reactant.
From chemical reaction: n(KOH) : n(Fe(OH)₂) = 2 : 1.
n(Fe(OH)₂) = n(KOH) ÷ 2.
n(Fe(OH)₂) = 3.62 mol ÷ 2.
n(Fe(OH)₂) = 1.81 mol; amount of iron(II) hydroxide.
Answer:
volume in L = 0.25 L
Explanation:
Given data:
Mass of Cu(NO₃)₂ = 2.43 g
Volume of KI = ?
Solution:
Balanced chemical equation:
2Cu(NO₃)₂ + 4KI → 2CuI + I₂ + 4KNO₃
Moles of Cu(NO₃)₂:
Number of moles = mass/ molar mass
Number of moles = 2.43 g/ 187.56 g/mol
Number of moles = 0.013 mol
Now we will compare the moles of Cu(NO₃)₂ with KI.
Cu(NO₃)₂ : KI
2 : 4
0.013 : 4 × 0.013=0.052 mol
Volume of KI:
<em>Molarity = moles of solute / volume in L</em>
volume in L = moles of solute /Molarity
volume in L = 0.052 mol / 0.209 mol/L
volume in L = 0.25 L
3 Mg + 1 Fe2O3 →2 Fe + 3MgO
Type of Reaction: Single displacement.
Answer:
328.1 K.
Explanation:
- To calculate the no. of moles of a gas, we can use the general law of ideal gas: <em>PV = nRT</em>.
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in.
- If n is constant, and have two different values of (P, V and T):
<em>P₁V₁T₂ = P₂V₂T₁</em>
<em></em>
P₁ = 1.0 atm (standard P), V₁ = 72.1 L, T₁ = 25°C + 273 = 298 K (standard T).
P₂ = 93.6 kPa = 0.924 atm, V₂ = 85.9 L, T₂ = ??? K.
<em>T₂ = P₂V₂T₁/P₁V₁ = </em>(0.924 atm)(85.9 L)(298 K)/(1.0 atm)(72.1 L) <em>= 328.1 K.</em>
<em></em>