Q is unlike K value it describes the reaction that is not at equilibrium.
by considering this reaction:
aA+ bB⇄ cC
and our reaction is:
Br2 + Cl2 ⇄ 2 BrCl
According to Q low:
Q= concentration of products/concentration of reactants
but this equation in the gaseous or aqueous states only.
∴ Q = [BrCl]^2 / [Br2] [Cl2]
and we have [Br2] = 0.00366 m [Cl2]= 0.000672 m [BrCl] = 0.00415 m
by substitution:
= [0.00415]^2 / ( [0.00366] * [0.000672])
∴ Q = 7
Well, first we must remember that

This is because


So then

Answer: The concentration of C29H60 in nM per liter is 83,33 nM/liter
Explanation: Let's start from the ppb definition: ppb means parts per billion. In terms of concentracion measuring this means micrograms of solute per liter of solution.
The algebraic expression would be:
<em>ppb [=] micrograms of compound/liter of solution</em>
We can assume that the solvent is water. The solute is dissolved in water and both create the C29H60 solution.
For the exercise we have 34 ppb of C29H60, that means 34 micrograms of C29H60 in one liter of solution. So, since now, we have to convert the units from the initial data to the required answer.
The respective procedure is in a attached file.
<span>If a mole of aluminum weighs 26.98 grams, that means 1 atom of aluminum weighs = (26.98 g/mole) / (6.023 x 10^23 atoms/mole) = 4.479 x 10^-23 grams,
</span>so, it is not possible because 1 atom weighs that much we calculated which is <span>almost 100 times more than the amount you mentioned</span>
Yes due to the radioactivity having nothing to do with the chemical equation given it will release radiation at a rate determined by it's half life.