Answer:
f = 5.25 x 10³⁸ s⁻¹
Explanation:
Energy = 348KJ = 348,000 J
Frequency = ?
Energy and frequency are related by the equation below;
E = hf
where h = Planck's constant = (6.626 x 10-34 J · s),
Upon making f subject of formular;
f = E / h
substituting the values, we have;
f = 348,000 / 6.626 x 10-34
f = 52,520 x 10 ³⁴ s⁻¹
f = 5.25 x 10³⁸ s⁻¹
Answer:
The correct answers are:
a) 180 g
b) 93.7 cm³
Explanation:
The density of a substance is the mass of the substance per unit of volume. So, it is calculated as follows:
density= mass/volume
From the data provided in the problem:
density = 0.8 g/cm³
a) Given: volume= 225 cm³
mass= density x volume = 0.8 g/cm³ x 225 cm³ = 180 g
b) Given: mass= 75.0 g
volume = mass/density = 75.0 g/(0.8 g/cm³)= 93.75 cm³≅ 93.7 cm³
Question:
The question is incomplete. What is required to calculate was not added.The equilibrium data was not also added. Below is the additional questions and the answers.
1. Calculate the minimum solvent that can be used.
2.Using a solvent rate of 1.5 times the minimum, calculate the number of
theoretical stages.
Answer:
1. Minimum solvent = 411.047
2. N = 5
Explanation:
See the attached files for explanations.
Complete question from other source attached
Answer:
Explanation:
Catalyzed by DNA polymerase - both. DNA polymerase catalyzes DNA replication in the cell. However, purified versions of the enzyme are also used to synthesise DNA as part of PCR reactions
involves leading strand synthesis only - PCR. In PCR, lagging strand synthesis is not carried out because the DNA is denatured (rendered single stranded). Therefore, each strand is replicated independently by leading strand synthesis
duplicates a small fragment of the genome - PCR. Usually, to carry out PCR, small sequences called primers are used that specify the region of DNA to be replicated
duplicates the entire genome - in vivo replication - when the DNA is replicated in vivo, the entire genome is replicated. This is carried out prior to cell division so that two daughter cells can each inherit a copy of the entire genome
Answer:
Molar concentration of the Fe³⁺ in the unknown solution is 8.01x10⁻⁵M.
Explanation:
When you make a calibration curve in a spectrophotographic analysis you are applying the Lambert-Beer law that states the concentration of a compound is directely proportional to its absorbance:
A = E*l*C
<em>Where A is absorbance, E is molar absorption coefficient, l is optical path length and C is molar concentration</em>
<em />
Using the equation of the line you obtain:
y = 4541.6X + 0.0461
<em>Where Y is absorbance and X is concentration -We will assume concentration is given in molarity-</em>
As absorbance of the unknown is 0.410:
0.410 = 4541.6X + 0.0461
X = 8.01x10⁻⁵M
<h3>Molar concentration of the Fe³⁺ in the unknown solution is 8.01x10⁻⁵M.</h3>
<em />