The first step in the reaction is the double bond of the Alkene going after the H of HBr. This protonates the Alkene via Markovnikov's rule, and forms a carbocation. The stability of this carbocation dictates the rate of the reaction.
<span>So to solve your problem, protonate all your Alkenes following Markovnikov's rule, and then compare the relative stability of your resulting carbocations. Tertiary is more stable than secondary, so an Alkene that produces a tertiary carbocation reacts faster than an Alkene that produces a secondary carbocation.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>
<u>Answer</u>: Conduction, convection, and radiation move energy from the Sun to Earth and throughout Earth.
Without more information about the experiment itself, I would choose the above answer as correct. All the other statements are correct, however none of them relates to the earth distribution processes on Earth. The last statement does.
Answer:
-169°C to -104°C
Explanation:
Ethene, also known as ethylene exists in solid, liquid and gaseous states. Ethene is an aliens with condensed structural formula C2H4. Athens is a colourless gas. It is flammable and is also a sweet smelling gas in its pure form. It is the monomer in the production of polyethylene which is of great importance in the plastic industry. In agriculture, it is used to induce the ripening of fruits. It can be hydrated in order to produce ethanol.
The liquid range of ethene refers to the temperatures at which ethene is found in the liquid state of matter. It is actually the difference between the melting point and the boiling points of ethene. Hence the liquid range of ethene is -169°C to -104°C
Soda provides nutritional value that helps plants grow.
Explanation:
I just did this question and that’s what was right.
Answer:
to which cations from the salt bridge migrate
Explanation:
A voltaic cell is an electrochemical cell that uses spontaneous redox reactions to generate electricity. It's composed of a cathode, an anode, and a salt bridge.
In cathode, the substance is gaining electrons, so it's reducing, in the anode, the substance is losing electrons, so it's oxidating. The flow of electrons is from the anode to the cathode.
The salt bridge is a bond between the cathode and the anode. When the redox reaction takes place, the substances produce its ions, so the solution is no more neutral. The salt bridge allows the solutions to become neutral and the redox reaction continues.
So, the cathode produces anions, which goes to the anode, and the anode produces cations, which goes to the cathode. Then, the cathode n a voltaic cell is the electrode to which cations from salt bridge migrate and where the reduction takes place.