answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Reika [66]
1 year ago
15

An aqueous feed solution of 1000 kg/h containing 23.5 wt % acetone and 76.5 wt % water is being extracted in a countercurrent mu

ltistage extraction system using pure methylisobutyl ketone solvent at 298–299 k. the outlet water raffinate will contain 2.5 wt % acetone. use equilibrium data from

Chemistry
1 answer:
JulijaS [17]1 year ago
5 0

Question:

The question is incomplete. What is required to calculate was not added.The equilibrium data was not also added. Below is the additional questions and the answers.

1. Calculate the minimum solvent that can be used.

2.Using a solvent rate of 1.5 times the minimum, calculate the number of

theoretical stages.

Answer:

1. Minimum solvent = 411.047

2. N = 5

Explanation:

See the attached files for explanations.

You might be interested in
Element X is found in two forms: 90.0% is an isotope that has a mass of 20.0, and 10.0% is an isotope that has a mass of 22.0. W
VMariaS [17]
M_{X} = \frac{(20.0\cdot 90\%)+(22.0\cdot10\%)}{100\%} = \frac{2020}{100} = 20.2[u]

answer: B
7 0
2 years ago
I NEED HELP ASAP, WILL MARK BRAINLEST!
Andre45 [30]

Answer:

1. 90%

2. 217.4 g O₂

3. 95.0%

4. Trial 2 ratios

Explanation:

Original: SiCl₄ + O₂ → SiO₂ + Cl₂

Balanced: SiCl₄ + O₂ → SiO₂ + 2Cl₂

Trial        SiCl₄                   O₂                    SiO₂

 1           120 g                  240 g              38.2 g

 2           75 g                   50 g                25.2 g

<u>Percentage yield for trial 1</u>

We need to get actual yield (38.2 g) and theoretical yield, in grams.

Mass to moles:

 molar mass SiCl₄: 28.09 + 4(35.45) = 169.9 g/mol

 120 g SiCl₄ x 1 mol/169.9 g = .706 mol SiCl₄

Moles to moles:

 For each mole SiCl₄, we have one mol SiO₂ based on the balanced rxn.

 .706 mol SiCl₄ = .706 mol SiO₂

Moles to mass:

 molar mass SiO₂: 28.09 + 2(16.00) = 60.09 g/mol

 .706 mol SiO₂ x 60.09g/mol = 42.44 g SiO₂

Theoretical yield:

 actual/theoretical x 100

 38.2 / 42.44 = .900 = <u>90.0% yield</u>

<u>Leftover reactant for trial 1</u>

We know oxygen is the excess reactant.

Mass to moles:

 molar mass O₂ = 32.00 g/mol

 240 g O₂ x 1 mol/32.00 g = 7.5 mol O₂

We used .706 mol SiO₂, so we also used .706 mol O₂.

 7.5 - .706 = 6.8 moles left over

Moles to mass:

 6.8 mol O₂ x 32.00g/mol =<u> 217.4 g O₂</u>

<u />

<u>Percentage yield for trial 2</u>

Mass to moles:

 molar mass SiCl₄: 169.9 g/mol

 75 g SiCl₄ x 1 mol/169.9 g = .441 mol SiCl₄

Moles to moles:

 For each mole SiCl₄, we have one mol SiO₂ based on the balanced rxn.

 .441 mol SiCl₄ = .441 mol SiO₂

Moles to mass:

 molar mass SiO₂: 60.09 g/mol

 .441 mol SiO₂ x 60.09g/mol = 26.5 g SiO₂

Theoretical yield:

 actual/theoretical x 100

 25.2 / 26.5 = .950 = <u>95.0% yield</u>

Because the percentage yield of trial 2 is higher than that of trial 1, we know that the ratio of reactants in trial 2 is more efficient! We got a result closer to our theoretical yield.

6 0
2 years ago
Select all true statements about hybridization, of a second-row element, changing from sp2 to sp3. (max of 3 choices) a. The ato
Neko [114]

Answer:

a. The atom will go from a two-dimensional configuration to a three dimensional configuration.

d. The bond angle will increase.

f. The number of unhybridized p orbitals will decrease.

Explanation:

Sp2 is the atomic bond in which orbitals mixes with only two orbitals. These orbitals form three sp2. When two carbon atoms are overlapped they form sigma bond by overlapping of sp2 bonds. Sp3 bond is created when there is one lone molecule available for combination. When the bonding is updated from sp2 to sp3 then unhybridized orbitals will decrease causing the bond angle to increase.

8 0
2 years ago
For each reaction, find the value of ΔSo. Report the value with the appropriate sign. (a) 3 NO2(g) + H2O(l) → 2 HNO3(l) + NO(g)
aev [14]

Answer:

ΔS° = -268.13 J/K

Explanation:

Let's consider the following balanced equation.

3 NO₂(g) + H₂O(l) → 2 HNO₃(l) + NO(g)

We can calculate the standard entropy change of a reaction (ΔS°) using the following expression:

ΔS° = ∑np.Sp° - ∑nr.Sr°

where,

ni are the moles of reactants and products

Si are the standard molar entropies of reactants and products

ΔS° = [2 mol × S°(HNO₃(l)) + 1 mol × S°(NO(g))] - [3 mol × S°(NO₂(g)) + 1 mol × S°(H₂O(l))]

ΔS° = [2 mol × 155.6 J/K.mol + 1 mol × 210.76 J/K.mol] - [3 mol × 240.06 J/K.mol + 1 mol × 69.91 J/k.mol]

ΔS° = -268.13 J/K

7 0
2 years ago
The decomposition of AB given here in this balanced equation 2AB (g)⟶ A2 (g) + B2 (g), has rate constants of 8.58 x 10-9 L/mol s
denis-greek [22]

Answer:

3.24 × 10^5 J/mol

Explanation:

The activation energy of this reaction can be calculated using the equation:

ln(k2/k1) = Ea/R x (1/T1 - 1/T2)

Where; Ea = the activation energy (J/mol)

R = the ideal gas constant = 8.3145 J/Kmol

T1 and T2 = absolute temperatures (K)

k1 and k2 = the reaction rate constants at respective temperature

First, we need to convert the temperatures in °C to K

T(K) = T(°C) + 273.15

T1 = 325°C + 273.15

T1 = 598.15K

T2 = 407°C + 273.15

T2 = 680.15K

Since, k1= 8.58 x 10-9 L/mol, k2= 2.16 x 10-5 L/mol, R= 8.3145 J/Kmol, we can now find Ea

ln(k2/k1) = Ea/R x (1/T1 - 1/T2)

ln(2.16 x 10-5/8.58 x 10-9) = Ea/8.3145 × (1/598.15 - 1/680.15)

ln(2517.4) = Ea/8.3145 × 2.01 × 10^-4

7.831 = Ea(2.417 × 10^-5)

Ea = 3.24 × 10^5 J/mol

8 0
1 year ago
Other questions:
  • Jocelyn has 400 pounds of chemical A that she must react with 200 pounds of chemical B to create chemical C for use in an indust
    12·2 answers
  • What is the driving force for the reaction of hcl(aq) and naoh(aq)?
    13·1 answer
  • How many atoms of oxygen are in 8.43 g of magnesium sulfate heptahydrate (Epsom salts)?How many atoms of oxygen are in 8.43 g of
    14·2 answers
  • When 64.0 g of methanol (CHOH) is burned, 1454 kJ of energy is produced. What is the heat of combustion for methanol?
    14·1 answer
  • The student decided to do another experiment with his leftover copper(II) sulfate (CuSO4) solution. He divided the solution up i
    12·1 answer
  • Be sure to answer all parts.
    5·2 answers
  • What is the final temperature of the solution formed when 1.52 g of NaOH is added to 35.5 g of water at 20.1 °C in a calorimeter
    7·1 answer
  • 86.1 g of nitrogen reacts with lithium, how many grams of lithium will react?
    13·1 answer
  • Calculate Δ H o for the reaction. CH3OH + HCl → CH3Cl + H2O answer is in kJ/mol .
    14·1 answer
  • In addition to the separation techniques used in this lab (magnetism, evaporation, and filtering), there are other commonly used
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!