answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
crimeas [40]
1 year ago
14

The decomposition of AB given here in this balanced equation 2AB (g)⟶ A2 (g) + B2 (g), has rate constants of 8.58 x 10-9 L/mol s

at 325°C and 2.16 x 10-5 L/mol x at 407°C. Find the activation energy
Chemistry
1 answer:
denis-greek [22]1 year ago
8 0

Answer:

3.24 × 10^5 J/mol

Explanation:

The activation energy of this reaction can be calculated using the equation:

ln(k2/k1) = Ea/R x (1/T1 - 1/T2)

Where; Ea = the activation energy (J/mol)

R = the ideal gas constant = 8.3145 J/Kmol

T1 and T2 = absolute temperatures (K)

k1 and k2 = the reaction rate constants at respective temperature

First, we need to convert the temperatures in °C to K

T(K) = T(°C) + 273.15

T1 = 325°C + 273.15

T1 = 598.15K

T2 = 407°C + 273.15

T2 = 680.15K

Since, k1= 8.58 x 10-9 L/mol, k2= 2.16 x 10-5 L/mol, R= 8.3145 J/Kmol, we can now find Ea

ln(k2/k1) = Ea/R x (1/T1 - 1/T2)

ln(2.16 x 10-5/8.58 x 10-9) = Ea/8.3145 × (1/598.15 - 1/680.15)

ln(2517.4) = Ea/8.3145 × 2.01 × 10^-4

7.831 = Ea(2.417 × 10^-5)

Ea = 3.24 × 10^5 J/mol

You might be interested in
The decomposition of nitramide, O 2 NNH 2 , O2NNH2, in water has the chemical equation and rate law O 2 NNH 2 ( aq ) ⟶ N 2 O ( g
valkas [14]

Answer:

Explanation:

The given overall reaction is as follows:

O 2 N N H ₂( a q ) k → N ₂O ( g ) + H ₂ O( l )

The reaction mechanism for this reaction is as follows:

O ₂ N N H ₂ ⇌ k 1 k − 1  O ₂N N H ⁻ + H ⁺ ( f a s t  e q u i l i b r i u m )

O ₂ N N H − k ₂→ N ₂ O + O H ⁻ ( s l ow )

H ⁺ + O H − k ₃→ H ₂ O ( f a s t )

The rate law of the reaction is given as follows:

k = [ O ₂ N N H ₂ ]  / [ H ⁺ ]

The rate law can be determined by the slow step of the mechanism.

r a t e = k ₂ [ O ₂ N N H ⁻ ] . . . ( 1 )

Since, from the equilibrium reaction

k e q = [ O ₂ N N H ⁻ ] [ H ⁺ ] /[ O ₂ N N H ₂ ] = k ₁ /k − 1

[ O ₂ N N H ⁻] = k ₁ /k − 1  × [ O ₂ N N H ₂ ] /[ H ⁺ ]. . . . ( 2 )

Substitituting the value of equation (2) in equation (1) we get.

r a t e = k ₂ k ₁/ k − 1  × [ O ₂ N N H ₂ ] /[ H ⁺ ]

Therefore, the overall rate constant is

k = k₂k₁/k-1

5 0
1 year ago
Determine whether each description applies to electrophilic aromatic substitution or nucleophilic aromatic substitution.
Alborosie

Answer:

a. electrophilic aromatic substitution

b. nucleophilic aromatic substitution

c. nucleophilic aromatic substitution

d. electrophilic aromatic substitution

e. nucleophilic aromatic substitution

f. electrophilic aromatic substitution

Explanation:

Electrophilic aromatic substitution is a type of chemical reaction where a hydrogen atom or a functional group that is attached to the aromatic ring is replaced by an electrophile. Electrophilic aromatic substitutions can be classified into five classes: 1-Halogenation: is the replacement of one or more hydrogen (H) atoms in an organic compound by a halogen such as, for example, bromine (bromination), chlorine (chlorination), etc; 2- Nitration: the replacement of H with a nitrate group (NO2); 3-Sulfonation: the replacement of H with a bisulfite (SO3H); 4-Friedel-CraftsAlkylation: the replacement of H with an alkyl group (R), and 5-Friedel-Crafts Acylation: the replacement of H with an acyl group (RCO). For example, the Benzene undergoes electrophilic substitution to produce a wide range of chemical compounds (chlorobenzene, nitrobenzene, benzene sulfonic acid, etc).

A nucleophilic aromatic substitution is a type of chemical reaction where an electron-rich nucleophile displaces a leaving group (for example, a halide on the aromatic ring). There are six types of nucleophilic substitution mechanisms: 1-the SNAr (addition-elimination) mechanism, whose name is due to the Hughes-Ingold symbol ''SN' and a unimolecular mechanism; 2-the SN1 reaction that produces diazonium salts 3-the benzyne mechanism that produce highly reactive species (including benzyne) derived from the aromatic ring by the replacement of two substituents; 4-the free radical SRN1 mechanism where a substituent on the aromatic ring is displaced by a nucleophile with the formation of intermediary free radical species; 5-the ANRORC (Addition of the Nucleophile, Ring Opening, and Ring Closure) mechanism, involved in reactions of metal amide nucleophiles and substituted pyrimidines; and 6-the Vicarious nucleophilic substitution, where a nucleophile displaces an H atom on the aromatic ring but without leaving groups (such as, for example, halogen substituents).

3 0
2 years ago
Imagine you are a detective examining a crime scene. You are trying to
Sidana [21]

Answer:

C. pieces of hair found at the crime scene.

Explanation:

using the pieces of hair, you can get the DNA of the person. This will give u a better lead in solving the crime.

Hope it helps u ....

4 0
2 years ago
Read 2 more answers
In two or more complete sentences explain how to balance the chemical equation and classify its reaction type. ___P4 + ___O2 ⟶ _
Serhud [2]

According to the conversation of mass, mass cannot be created or destroyed. This means whatever is done to one side, must be done to the other.

There are 4 Phosphorus atoms on the left, there must be 4 on the right. To do this, you must multiply the P2O3 by 2 to get 4 Phosphorus atoms and 6 Oxygen atoms. Now to balance the Oxygen atoms, you must multiply the oxygen atoms on the left by 3.

1 P4 + 3 O2 —-> 2 P2O3

Lastly, this equation type is synthesis (combination) because two reactants are becoming a single product.

3 0
2 years ago
Read 2 more answers
A box has a volume of 45m3 and is filled with air held at 25∘C and 3.65atm. What will be the pressure (in atmospheres) if the sa
Marina CMI [18]

Answer:

Given:

  • Initial pressure: 3.65\; \rm atm.
  • Volume was reduced from 45\; \rm m^{3} to 5.0\; \rm m^{3}.
  • Temperature was raised from 25\; ^\circ \rm C to 35\; ^\circ \rm C.

New pressure: approximately 3.4\times 10\; \rm atm (34\; \rm atm.) (Assuming that the gas is an ideal gas.)

Explanation:

Both the volume and the temperature of this gas has changed. Consider the two changes in two separate steps:

  • Reduce the volume of the gas from 45\; \rm m^{3} to 5.0\; \rm m^{3}. Calculate the new pressure, P_1.
  • Raise the temperature of the gas from 25\; ^\circ \rm C to 35\; ^\circ \rm C. Calculate the final pressure, P_2.

By Boyle's Law, the pressure of an ideal gas is inversely proportional to the volume of this gas (assuming constant temperature and that no gas particles escaped or was added.)

For this gas, V_0 = 45\; \rm m^{3} while V_1 = 5.0\; \rm m^{3}.

Let P_0 denote the pressure of this gas before the volume change (P_0 = 3.65\; \rm atm.) Let P_1 denote the pressure of this gas after the volume change (but before changing the temperature.) Apply Boyle's Law to find the ratio between P_1\! and P_0\!:

\displaystyle \frac{P_1}{P_0} = \frac{V_0}{V_1} = \frac{45\; \rm m^{3}}{5.0\; \rm m^{3}} = 9.0.

In other words, because the final volume is (1/9) of the initial volume, the final pressure is 9 times the initial pressure. Therefore:

\displaystyle P_1 = 9.0\times P_0 = 32.85\; \rm atm.

On the other hand, by Amonton's Law, the pressure of an ideal gas is directly proportional to the temperature (in degrees Kelvins) of this gas (assuming constant volume and that no gas particle escaped or was added.)

Convert the unit of the temperature of this gas to degrees Kelvins:

T_1 = (25 + 273.15)\; \rm K = 298.15\; \rm K.

T_2 = (35 + 273.15)\; \rm K = 308.15\; \rm K.

Let P_1 denote the pressure of this gas before this temperature change (P_1 = 32.85\; \rm atm.) Let P_2 denote the pressure of this gas after the temperature change. The volume of this gas is kept constant at V_2 = V_1 = 5.0\; \rm m^{3}.

Apply Amonton's Law to find the ratio between P_2 and P_1:

\displaystyle \frac{P_2}{P_1} = \frac{T_2}{T_1} = \frac{308.16\; \rm K}{298.15\; \rm K}.

Calculate P_2, the final pressure of this gas:

\begin{aligned} P_2 &= \frac{308.15\; \rm K}{298.15\; \rm K} \times P_1 \\ &= \frac{308.15\; \rm K}{298.15\; \rm K} \times 32.85\; \rm atm \approx 3.4 \times 10\; \rm atm\end{aligned}.

In other words, the pressure of this gas after the volume and the temperature changes would be approximately 3.4\times 10\; \rm atm.

8 0
1 year ago
Other questions:
  • How many milliliters of 0.02 M HCl are needed to react completely with 100 mL of 0.01 M NaOH?
    10·2 answers
  • A 5.00 gram sample of an oxide of lead PbxOy contains 4.33g of lead. Determine the simplest formula for the compound.
    8·1 answer
  • If it takes three "breaths" to blow up a balloon to 1.2 l, and each breath supplies the balloon with 0.060 moles of exhaled air,
    10·2 answers
  • Write the expression for the equilibrium constant Kp for the following reaction.Enclose pressures in parentheses and do NOT writ
    13·1 answer
  • Menthol is a flavoring agent extracted from peppermint oil. It contains C, H, and O. In one combustion analysis, 10.00 mg of the
    5·1 answer
  • Ricardo finds an online site about the gas laws. The site shows the equation below for Charles’s law.
    10·2 answers
  • Which of the following NOT a principle of deep ecology, according to Arne Naess? All life has intrinsic value Environment must b
    12·1 answer
  • One container of turns costs 4 dollars. Each container has eighty 1g tablets. Assume each turns is 40% caco₃. Using only turns,
    14·1 answer
  • In the best Lewis structure for the fulminate ion, CNO–, what is the formal charge on the central nitrogen atom?
    9·1 answer
  • Los automóviles actuales tienen “parachoques de 5 mi/h (8 km/h)” diseñados para comprimirse y rebotar elásticamente sin ningún d
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!