answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
poizon [28]
2 years ago
5

A box has a volume of 45m3 and is filled with air held at 25∘C and 3.65atm. What will be the pressure (in atmospheres) if the sa

me amount of air is placed in a box with a volume of 5.0m3 at 35∘C? Report your answer with two significant figures.
Chemistry
1 answer:
Marina CMI [18]2 years ago
8 0

Answer:

Given:

  • Initial pressure: 3.65\; \rm atm.
  • Volume was reduced from 45\; \rm m^{3} to 5.0\; \rm m^{3}.
  • Temperature was raised from 25\; ^\circ \rm C to 35\; ^\circ \rm C.

New pressure: approximately 3.4\times 10\; \rm atm (34\; \rm atm.) (Assuming that the gas is an ideal gas.)

Explanation:

Both the volume and the temperature of this gas has changed. Consider the two changes in two separate steps:

  • Reduce the volume of the gas from 45\; \rm m^{3} to 5.0\; \rm m^{3}. Calculate the new pressure, P_1.
  • Raise the temperature of the gas from 25\; ^\circ \rm C to 35\; ^\circ \rm C. Calculate the final pressure, P_2.

By Boyle's Law, the pressure of an ideal gas is inversely proportional to the volume of this gas (assuming constant temperature and that no gas particles escaped or was added.)

For this gas, V_0 = 45\; \rm m^{3} while V_1 = 5.0\; \rm m^{3}.

Let P_0 denote the pressure of this gas before the volume change (P_0 = 3.65\; \rm atm.) Let P_1 denote the pressure of this gas after the volume change (but before changing the temperature.) Apply Boyle's Law to find the ratio between P_1\! and P_0\!:

\displaystyle \frac{P_1}{P_0} = \frac{V_0}{V_1} = \frac{45\; \rm m^{3}}{5.0\; \rm m^{3}} = 9.0.

In other words, because the final volume is (1/9) of the initial volume, the final pressure is 9 times the initial pressure. Therefore:

\displaystyle P_1 = 9.0\times P_0 = 32.85\; \rm atm.

On the other hand, by Amonton's Law, the pressure of an ideal gas is directly proportional to the temperature (in degrees Kelvins) of this gas (assuming constant volume and that no gas particle escaped or was added.)

Convert the unit of the temperature of this gas to degrees Kelvins:

T_1 = (25 + 273.15)\; \rm K = 298.15\; \rm K.

T_2 = (35 + 273.15)\; \rm K = 308.15\; \rm K.

Let P_1 denote the pressure of this gas before this temperature change (P_1 = 32.85\; \rm atm.) Let P_2 denote the pressure of this gas after the temperature change. The volume of this gas is kept constant at V_2 = V_1 = 5.0\; \rm m^{3}.

Apply Amonton's Law to find the ratio between P_2 and P_1:

\displaystyle \frac{P_2}{P_1} = \frac{T_2}{T_1} = \frac{308.16\; \rm K}{298.15\; \rm K}.

Calculate P_2, the final pressure of this gas:

\begin{aligned} P_2 &= \frac{308.15\; \rm K}{298.15\; \rm K} \times P_1 \\ &= \frac{308.15\; \rm K}{298.15\; \rm K} \times 32.85\; \rm atm \approx 3.4 \times 10\; \rm atm\end{aligned}.

In other words, the pressure of this gas after the volume and the temperature changes would be approximately 3.4\times 10\; \rm atm.

You might be interested in
A bar of gold is 5.0mm thick, 10.0cm long and 2.0cm wide. It has a mass of exactly 193.0g. What is the desity of gold?
Tanzania [10]
<h3>Answer:</h3>

19.3 g/cm³

<h3>Explanation:</h3>

Density of a substance refers to the mass of the substance per unit volume.

Therefore, Density = Mass ÷ Volume

In this case, we are given;

Mass of the gold bar = 193.0 g

Dimensions of the Gold bar = 5.00 mm by 10.0 cm by 2.0 cm

We are required to get the density of the gold bar

Step 1: Volume of the gold bar

Volume is given by, Length × width × height

Volume =  0.50 cm × 10.0 cm × 2.0 cm

             = 10 cm³

Step 2: Density of the gold bar

Density = Mass ÷ volume

Density of the gold bar = 193.0 g ÷ 10 cm³

                                      = 19.3 g/cm³

Thus, the density of the gold bar is 19.3 g/cm³

3 0
2 years ago
An object will sink in a liquid if the density of the object is greater than that of the liquid. the mass of a sphere is 9.83 g.
lord [1]
The volumeof this sphere must be less than 0.7228

5 0
2 years ago
Rank the following chemical species from lowest absolute entropy (So) (1) to highest absolute entropy (5) at 298 K?
kramer

Answer:

Rank the following chemical species from lowest absolute entropy (So) (1) to highest absolute entropy (5) at 298 K?

a. Al (s)

b. H2O (l)

c. HCN (g)

d. CH3COOH (l)

e. C2H6 (g)

Explanation:

Entropy is the measure of the degree of disorderness.

In solids, the entropy is very less compared to liquids and gases.

The entropy order is:

solids<liquids<gases

Among the given substances, water in liquid form has a strong intermolecular H-bond.

So, it has also less entropy.

Next acetic acid.

Between the gases, HCN, and ethane, ethane has more entropy due to very weak intermolecular interactions.

HCN has slight H-bonding in IT.

Hence, the entropy order is:

Al(s) < CH3COOH (l) <H2O(l) < HCN(g) < C2H6(g)

7 0
2 years ago
HgS + O2 → HgO + SO2
Igoryamba

Answer:

2HgS + 3O2 → 2HgO + 2SO2

The coefficients are: 2, 3, 2, 2

Explanation:

HgS + O2 → HgO + SO2

The equation can be balance as follow:

Put 3 in front of O2 as shown below:

HgS + 3O2 → HgO + SO2

Now we can see that there are 6 atoms of O on the left side of the equation and a total of 3 atoms on the right side. It can be balance by putting 2 in front of HgO and SO2 as shown below:

HgS + 3O2 → 2HgO + 2SO2

Now we have 2 atoms of both Hg and S on the right side and 1atom each on the left. It can be balance by putting 2 in front of HgS as shown below:

2HgS + 3O2 → 2HgO + 2SO2

Now the equation is balanced.

The coefficients are: 2, 3, 2, 2

The law of conservation of mass(matter) states that matter(mass) can neither be created nor destroyed during a chemical reaction but changes from one form to another. An unbalanced equation suggests that matter has been created or destroyed. While a balanced equation proofs that matter can never be created but changes to different form. This is the more reason we have count the atoms of an element on both side of the equation to see if they are balanced irrespective of the new form they assume in the product

5 0
2 years ago
What commercially available compound is used to generate cl2?
GuDViN [60]
<span>Bleach and ammonia can be used to make cl2. Bleach is commercially available and so people should be very careful during these experiments or even when mixing things in the household.</span>
6 0
2 years ago
Read 2 more answers
Other questions:
  • At STP graphite and diamond are two solid forms of carbon which statement explains why these two forms of carbon differ in hardn
    15·2 answers
  • Calculate the amount (in grams) of kcl present in 75.0 ml of 2.10 m kcl
    5·1 answer
  • Calculate the ratio of effusion rates of cl2 to f2 .
    11·1 answer
  • When uranium-235 atoms undergo fission, ________ is/are produced?
    11·1 answer
  • Propose a plausible mechanism for the reaction f2 + 2clo2 → 2fclo2 given that the rate law for the reaction is rate = k[f2][clo2
    11·2 answers
  • How much heat is released during the formation of 3.18 mol HCl(g) in this reaction: H2(g)+Cl2(g) → 2HCl(g) with a H of -184.6 kJ
    7·2 answers
  • 84. Heavy water, D2O (molar mass = 20.03 g mol–1), can be separated from ordinary water, H2O (molar mass = 18.01), as a result o
    10·1 answer
  • Miriam notices when she goes to the beach that sometimes the water rises as high as the pier. At other times of the day, the wat
    15·1 answer
  • Use the specific heat capacity that you calculated for granite to determine how many grams of granite at the initial temperature
    15·1 answer
  • What evidence did the team examine that matter is conserved when dry ice changes into a gas?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!