answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
poizon [28]
1 year ago
5

A box has a volume of 45m3 and is filled with air held at 25∘C and 3.65atm. What will be the pressure (in atmospheres) if the sa

me amount of air is placed in a box with a volume of 5.0m3 at 35∘C? Report your answer with two significant figures.
Chemistry
1 answer:
Marina CMI [18]1 year ago
8 0

Answer:

Given:

  • Initial pressure: 3.65\; \rm atm.
  • Volume was reduced from 45\; \rm m^{3} to 5.0\; \rm m^{3}.
  • Temperature was raised from 25\; ^\circ \rm C to 35\; ^\circ \rm C.

New pressure: approximately 3.4\times 10\; \rm atm (34\; \rm atm.) (Assuming that the gas is an ideal gas.)

Explanation:

Both the volume and the temperature of this gas has changed. Consider the two changes in two separate steps:

  • Reduce the volume of the gas from 45\; \rm m^{3} to 5.0\; \rm m^{3}. Calculate the new pressure, P_1.
  • Raise the temperature of the gas from 25\; ^\circ \rm C to 35\; ^\circ \rm C. Calculate the final pressure, P_2.

By Boyle's Law, the pressure of an ideal gas is inversely proportional to the volume of this gas (assuming constant temperature and that no gas particles escaped or was added.)

For this gas, V_0 = 45\; \rm m^{3} while V_1 = 5.0\; \rm m^{3}.

Let P_0 denote the pressure of this gas before the volume change (P_0 = 3.65\; \rm atm.) Let P_1 denote the pressure of this gas after the volume change (but before changing the temperature.) Apply Boyle's Law to find the ratio between P_1\! and P_0\!:

\displaystyle \frac{P_1}{P_0} = \frac{V_0}{V_1} = \frac{45\; \rm m^{3}}{5.0\; \rm m^{3}} = 9.0.

In other words, because the final volume is (1/9) of the initial volume, the final pressure is 9 times the initial pressure. Therefore:

\displaystyle P_1 = 9.0\times P_0 = 32.85\; \rm atm.

On the other hand, by Amonton's Law, the pressure of an ideal gas is directly proportional to the temperature (in degrees Kelvins) of this gas (assuming constant volume and that no gas particle escaped or was added.)

Convert the unit of the temperature of this gas to degrees Kelvins:

T_1 = (25 + 273.15)\; \rm K = 298.15\; \rm K.

T_2 = (35 + 273.15)\; \rm K = 308.15\; \rm K.

Let P_1 denote the pressure of this gas before this temperature change (P_1 = 32.85\; \rm atm.) Let P_2 denote the pressure of this gas after the temperature change. The volume of this gas is kept constant at V_2 = V_1 = 5.0\; \rm m^{3}.

Apply Amonton's Law to find the ratio between P_2 and P_1:

\displaystyle \frac{P_2}{P_1} = \frac{T_2}{T_1} = \frac{308.16\; \rm K}{298.15\; \rm K}.

Calculate P_2, the final pressure of this gas:

\begin{aligned} P_2 &= \frac{308.15\; \rm K}{298.15\; \rm K} \times P_1 \\ &= \frac{308.15\; \rm K}{298.15\; \rm K} \times 32.85\; \rm atm \approx 3.4 \times 10\; \rm atm\end{aligned}.

In other words, the pressure of this gas after the volume and the temperature changes would be approximately 3.4\times 10\; \rm atm.

You might be interested in
Propose a plausible mechanism for the reaction f2 + 2clo2 → 2fclo2 given that the rate law for the reaction is rate = k[f2][clo2
shepuryov [24]

<u>The given reaction is:</u>

F2 + ClO2 → 2FClO2

Rate = k[F2][ClO2]

<u>Explanation:</u>

The possible mechanism for this reaction can be broken down into two steps with the slow step being the rate determining step

Step 1:       F2 + ClO2 → FClO2 + F ----------- Slow

Step 2:      F + ClO2 → FClO2           ----------- Fast

-----------------------------------------------------------

Overall:  F2 + 2ClO2 → 2FClO2

Rate = k[F2][ClO2]

 


8 0
1 year ago
Read 2 more answers
When a pan containing liquid and solid water (ice water) is put over the flame of a stove and stirred vigorously 1. the temperat
nata0808 [166]
<span>When a pan containing liquid and solid water (ice water) is put over the flame of a stove and stirred vigorously:</span> <span>2. the temperature rises but only after the ice melts.
It is known that ice lower the temperature of solution, after ice is melt temperature of liquid start to rise normally. Temperature of ice is 0</span>°C.
3 0
2 years ago
In acidic solution, the breakdown of sucrose into glucose and fructose has this rate law: rate = k[H+][sucrose].
Karo-lina-s [1.5K]

Answer:

a)If concentration of [Sucrose] is changed to 2.5 M than rate will be increased by the factor of 2.5.

b)If concentration of [Sucrose] is changed to 0.5 M than rate will be increased by the factor of 0.5.

c)If concentration of  [H^+] is changed to 0.0001 M than rate will be increased by the factor of 0.01.

d) If concentration when [sucrose] and[H^+] both are changed to 0.1 M than rate will be increased by the factor of 1.

Explanation:

Sucrose +  H^+\rightarrow  fructose+ glucose

The rate law of the reaction is given as:

R=k[H^+][sucrose]

[H^+]=0.01M

[sucrose]= 1.0 M

R=k[0.01M][1.0 M]..[1]

a)

The rate of the reaction when [Sucrose] is changed to 2.5 M = R'

R'=[0.01 M][2.5 M]..[2]

[2] ÷ [1]

\frac{R'}{R}=\frac{[0.01 M][2.5 M]}{k[0.01M][1.0 M]}

R'=2.5\times R

If concentration of [Sucrose] is changed to 2.5 M than rate will be increased by the factor of 2.5.

b)

The rate of the reaction when [Sucrose] is changed to 0.5 M = R'

R'=[0.01 M][0.5 M]..[2]

[2] ÷ [1]

\frac{R'}{R}=\frac{[0.01 M][0.5 M]}{k[0.01M][1.0 M]}

R'=2.5\times R

If concentration of [Sucrose] is changed to 0.5 M than rate will be increased by the factor of 0.5.

c)

The rate of the reaction when [H^+] is changed to 0.001 M = R'

R'=[0.0001 M][1.0 M]..[2]

[2] ÷ [1]

\frac{R'}{R}=\frac{[0.0001 M][1.0M]}{k[0.01M][1.0 M]}

R'=0.01\times R

If concentration of  [H^+] is changed to 0.0001 M than rate will be increased by the factor of 0.01.

d)

The rate of the reaction when [sucrose] and[H^+] both are changed to 0.1 M = R'

R'=[0.1M][0.1M]..[2]

[2] ÷ [1]

\frac{R'}{R}=\frac{[0.1M][0.1M]}{k[0.01M][1.0 M]}

R'=1\times R

If concentration when [sucrose] and[H^+] both are changed to 0.1 M than rate will be increased by the factor of 1.

5 0
2 years ago
The oxidation numbers of nitrogen in NH3, HNO3, and NO2 are, respectively: -3, -5, +4 +3, +5, +4 -3, +5, -4 -3, +5, +4
Evgesh-ka [11]

In NH3 , let oxidation number of N be x

x + (+1)3 = 0

x = -3

In HNO3 , let oxidation number of N be x

1 + x + (-2)3 = 0

x = +5

In NO2 , let oxidation number of N be x

x + (-2)2 = 0

x = +4
5 0
2 years ago
If the mass percentage composition of a compound is 72.1% Mn and 27.9% O, its empirical formula is
mojhsa [17]

Answer:

MnO- Manganese Oxide

Explanation:

Empirical formula: This is the formula that shows the ratio of elements

present in a  

compound.

   

How to determine Empirical formula

1. First arrange the symbols of the elements present in the compound

alphabetically to  determine the real empirical formula. Although, there

are exceptions to this rule, E.g H2So4

2. Divide the percentage composition by the mass number.

3. Then divide through by the smallest number.

4. The resulting answer is the ratio attached to the elements present in

a compound.

           

                                                                              Mn                         O    

                         

% composition                                                      72.1                      27.9    

                       

Divide by mass number                                       54.94                     16  

                                 

                                                                               1.31                      1.74    

                       

Divide by the smallest number                         1.31                      1.31                          

                                                                               1                    1.3

                                                 

The resulting ratio is 1:1

 

Hence the Empirical formula is MnO, Manganese oxide

8 0
2 years ago
Other questions:
  • How many grams of oxygen are in 56 g of c2h2o2?
    5·2 answers
  • A slender uniform rod 100.00 cm long is used as a meter stick. two parallel axes that are perpendicular to the rod are considere
    11·2 answers
  • Identify the items in the list below that are examples of matter. Check all that apply. idea iron sugar sound glass neon gas Cho
    15·3 answers
  • Hbr addition to an alkene is a ch221 reaction with which you should be familiar. when peroxides are present, one regioisomer is
    5·1 answer
  • A 6.1-kg solid sphere, made of metal whose density is 2600 kg/m3, is suspended by a cord. When the sphere is immersed in a liqui
    11·1 answer
  • A rigid cylinder with a movable piston contains a sample of hydrogen gas. At 330. K, this sample has a pressure of 150. kPa and
    5·1 answer
  • Mercury and bromine willreact with each other to produce mercury (II) bromide:Hg(l)+Br2(l)--&gt;HgBr2(s)Consider an experimentwh
    5·2 answers
  • Some scientists believe that life on Earth may have originated near deep-ocean vents. Balance the following reactions, which are
    11·2 answers
  • When the volume of a gas is changed from mL to 852 mL the temperature will change from 315c to 452c
    6·1 answer
  • What is the mean rate of reaction 3.4g of copper sulphate was produced in 3 days?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!