The fourth option is correct. Energy is transferred from the fire to the pot, and then to the water, and then to the peas.
<span>A dim white dwarf star, this is a star with a similar mass to earth. This star has no further fusion reactions at it's core. After this type of star has used up all of it's energy it will become a black dwarf star. Usually they are composed of oxygen and carbon. Sirius a and b are both white dwarf stars that orbit each other.</span>
Answer:
C)We cannot be sure unless we find out its boiling point.
Explanation:
It is necessary to clearly explain here that simply observing two compounds of the same homologous series irrespective of how close they may be in the series will not give us the faintest idea regarding which one will be a liquid, solid or gas at room temperature.
However, to determine whether an unknown substance will be a liquid at room temperature, then its important to measure its boiling point. If the boiling point is above room temperature, and the melting point is below room temperature, the compound is a liquid. If the boiling point of the unknown substance is below room temperature, it is a gas.
It is now safe to conclude that cannot decide on the state of matter in which a compound exists unless we know something about its boiling point, not merely looking closely at the properties of its neighbouring compounds in the same homologous series
Answer:
Neither accurate nor precise
Explanation:
The values were not near or even the same as the accepted value thus making it neither accurate nor precise.
B. Electrical energy is produced from oxidation reactions.
I don't have an explanation for this though. Do you need one? I can probably look it up.