answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BigorU [14]
2 years ago
12

Determine whether each description applies to electrophilic aromatic substitution or nucleophilic aromatic substitution.

Chemistry
1 answer:
Alborosie2 years ago
3 0

Answer:

a. electrophilic aromatic substitution

b. nucleophilic aromatic substitution

c. nucleophilic aromatic substitution

d. electrophilic aromatic substitution

e. nucleophilic aromatic substitution

f. electrophilic aromatic substitution

Explanation:

Electrophilic aromatic substitution is a type of chemical reaction where a hydrogen atom or a functional group that is attached to the aromatic ring is replaced by an electrophile. Electrophilic aromatic substitutions can be classified into five classes: 1-Halogenation: is the replacement of one or more hydrogen (H) atoms in an organic compound by a halogen such as, for example, bromine (bromination), chlorine (chlorination), etc; 2- Nitration: the replacement of H with a nitrate group (NO2); 3-Sulfonation: the replacement of H with a bisulfite (SO3H); 4-Friedel-CraftsAlkylation: the replacement of H with an alkyl group (R), and 5-Friedel-Crafts Acylation: the replacement of H with an acyl group (RCO). For example, the Benzene undergoes electrophilic substitution to produce a wide range of chemical compounds (chlorobenzene, nitrobenzene, benzene sulfonic acid, etc).

A nucleophilic aromatic substitution is a type of chemical reaction where an electron-rich nucleophile displaces a leaving group (for example, a halide on the aromatic ring). There are six types of nucleophilic substitution mechanisms: 1-the SNAr (addition-elimination) mechanism, whose name is due to the Hughes-Ingold symbol ''SN' and a unimolecular mechanism; 2-the SN1 reaction that produces diazonium salts 3-the benzyne mechanism that produce highly reactive species (including benzyne) derived from the aromatic ring by the replacement of two substituents; 4-the free radical SRN1 mechanism where a substituent on the aromatic ring is displaced by a nucleophile with the formation of intermediary free radical species; 5-the ANRORC (Addition of the Nucleophile, Ring Opening, and Ring Closure) mechanism, involved in reactions of metal amide nucleophiles and substituted pyrimidines; and 6-the Vicarious nucleophilic substitution, where a nucleophile displaces an H atom on the aromatic ring but without leaving groups (such as, for example, halogen substituents).

You might be interested in
If 4.35 g of phosphoric acid are added to 5.25g of KOH, what is the percent yield of the reaction if only 3.15g of potassium pho
irina1246 [14]
We are given with
4.35 g Phosphoric acid
5.25 g KOH
3.15 g K3PO4 produced

The reaction is
H3PO4 + 3KOH => K3PO4 + 3H2O

First, convert masses into moles.
Then, determine the limiting reactant.
Next, determine the maximum amount of K3PO4 that can be produced from the limiting reactant.
Lastly, calculate the percent yield by dividing the actual amount produced by the theoretical amount produced.
5 0
1 year ago
Item 5 A solution of methanol, CH3OH, in water is prepared by mixing together 128 g of methanol and 108 g of water. The mole fra
Basile [38]

Answer:

Mole fraction of methanol will be closest to 4.

Explanation:

Given, Mass of methanol = 128 g

Molar mass of methanol = 32.04 g/mol

The formula for the calculation of moles is shown below:

moles = \frac{Mass\ taken}{Molar\ mass}

Thus,

Moles= \frac{128\ g}{32.04\ g/mol}

Moles\ of\ methanol = 3.995\ mol

Given, Mass of water = 108 g

Molar mass of water = 18.0153 g/mol

The formula for the calculation of moles is shown below:

moles = \frac{Mass\ taken}{Molar\ mass}

Thus,

Moles= \frac{108\ g}{18.0153\ g/mol}

Moles\ of\ water= 5.995\ mol

So, according to definition of mole fraction:

Mole\ fraction\ of\ methanol=\frac {n_{methanol}}{n_{methanol}+n_{water}}

Mole\ fraction\ of\ methanol=\frac{3.995}{3.995+5.995}=0.39989

<u>Mole fraction of methanol will be closest to 4.</u>

5 0
1 year ago
A solution of HCl has StartBracket upper H superscript plus EndBracket. = 0.01 M. What is the pH of this solution?
hoa [83]

Answer:

2

Explanation:

Data:

[H⁺] = 0.01 mol·L⁻¹

Calculation:

pH = -log[H₃O⁺] = -log(0.01) = -log(1) - log(10⁻²) = -0 - (-2) = 0 + 2 = 2

7 0
1 year ago
Under standard conditions, a given reaction is endergonic (i.e., ΔG &gt;0). Which of the following can render this reaction favo
sleet_krkn [62]

Answer:

Maintaining a high starting-material concentration can render this reaction favorable.

Explanation:

A reaction is <em>favorable</em> when <em>ΔG < 0</em> (<em>exergonic</em>). ΔG depends on the temperature and on the reaction of reactants and products as established in the following expression:

ΔG = ΔG° + R.T.lnQ

where,

ΔG° is the standard Gibbs free energy

R is the ideal gas constant

T is the absolute temperature

Q is the reaction quotient

To make ΔG < 0 when ΔG° > 0 we need to make the term R.T.lnQ < 0. Since T is always positive we need lnQ to be negative, what happens when Q < 1. Q < 1 implies the concentration of reactants being greater than the concentration of products, that is, maintaining a high starting-material concentration will make Q < 1.

5 0
1 year ago
A sample of an unknown substance has a mass of 0.158 kg. If 2,510.0 J of heat is required to heat the substance from 32.0°C to 6
Alexxandr [17]
Specific heat capacity is the required amount of heat per unit of mass in order to raise teh temperature by one degree Celsius. It can be calculated from this equation: H = mCΔT where the H is heat required, m is mass of the substance, ΔT is the change in temperature, and C is the specific heat capacity.

H = m<span>CΔT
2501.0 = 0.158 (C) (61.0 - 32.0)

C = 545.8 J/kg</span>·°C
5 0
2 years ago
Other questions:
  • Which statement describes the general trends in electronegativity and first ionization energy as the elements in Period 3 are co
    15·2 answers
  • A physician has ordered 0.50 mg of atropine, intramuscularly. If atropine were available as 0.25 mg/mL of solution, how many mil
    15·1 answer
  • Which expression is equal to the number of grams (g) in 2.43 kilograms (kg)?
    14·2 answers
  • You have a racemic mixture of d-2-butanol and l-2-butanol. the d isomer rotates polarized light by +13.5∘. what is the rotation
    15·1 answer
  • Write the net cell equation for this electrochemical cell. phases are optional. do not include the concentrations. sn(s)||sn2+(a
    13·2 answers
  • A flask contains methane, chlorine and carbon monoxide gases. the partial pressures of each are 0.215 atm, 0.066 atm, and 0.826
    15·2 answers
  • Water (H2o) is composed of the same elements as hydrogen peroxide (H2o2) why do these substances have different properties
    8·2 answers
  • Urea is an organic compound widely used as a fertilizer. Its solubility in water allows it to be made into aqueous fertilizer so
    11·1 answer
  • A sample of carbon dioxide gas (CO2) contains 8.551 x 10^25 molecules. How many moles of carbon dioxide does this represent
    9·2 answers
  • 16.34 g of CuSO4 dissolved in water giving out 55.51 kJ and 25.17 g CuSO4•5H2O absorbs 95.31 kJ. From the following reaction cyc
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!