Convert moles to mass.
mass C = 0.2 mol * 12 g / mol = 2.4 g
mass H = 0.4 mol * 1 g / mol = 0.4 g
So mass left for O = 6 g – (2.4 g + 0.4 g) = 3.2 g
Calculating for moles O given mass:
moles O = 3.2 g / (16 g / mol) = 0.2 moles
Answer:
<span>0.2 moles O</span>
The change is that the air goes up then forms clouds.
Answer:
194 g/mol.
Explanation:
Hello,
In this case, one first must compute the mass of each element as shown below:

Next, the corresponding moles:

Then, each element's subscripts is found to be:

Therefore, the empirical formula is:

Nonetheless, it has a molar mass of 97bg/mol, thereby, by multiplying such formula by 2 one gets:

Which has a molar mass of 194 g/mol being correctly contained in the given interval.
Best regards.
Given reaction represents dissociation of bromine gas to form bromine atoms
Br2(g) ↔ 2Br(g)
The enthalpy of the above reaction is given as:
ΔH = ∑n(products)Δ
- ∑n(reactants)Δ
where n = number of moles
Δ
= enthalpy of formation
ΔH = [2*ΔH(Br(g)) - ΔH(Br2(g))] = 2*111.9 - 30.9 = 192.9 kJ/mol
Thus, enthalpy of dissociation is the bond energy of Br-Br = 192.9 kJ/mol
Answer:
The correct options are A, and C.
Explanation:
Osmosis: It is defined as the movement of solvent with the help of selectively semipermeable membrane into a region of where high solute concentration is present to equalize the concentration of solute on the both compartments.
Reverse osmosis: It is defined as the movement of the high concentration solvent is forced onto the lighter concentration side with the help of mechanical pressure.