He person lost 1224.7 grams.
c. A full s subshell is able to shield a newly filled p subshell from the nucleus, making the first electron in a p subshell easy to remove.
Explanation:
From the given options, a full s-sublevel is able to shield a newly filled p-subshell from the nucleus thereby making the first electron in a p-subshell easy to remove is correct.
What is ionization energy?
Ionization energy is a measure of the readiness of an atom to lose an electron.
First ionization energy is the energy required to remove the most loosely held electron in the gas phase.
The size of an atom/element depends on the number of electrons it contains. The more the electrons, the larger its size.
- The larger an atom becomes the lesser the ionization energy needed to remove the first electron from its outermost shell.
Electron - electron repulsion occurs when two electrons in the same sub-level repels one another.
Shielding effect is the ability of the inner electrons to protect the outer electrons from the pull of the nuclear charge.
In option C, a s-subshell has a greater shielding effect than the p,d and f sub-shell in that order.
A newly introduced electron in the p-sublevel will be loosely held and easier to remove.
Learn more:
First ionization energy brainly.com/question/2153804
#learnwithBrainly
Element with an atomic number of 58 is actually Cerium, so the symbol should be Ce, not Co because that is Cobalt which has an atomic number of 27. With that being said, the notation for isotopes is the symbol of the element with a superscript and a subscript that are aligned. The superscript represents the mass number.
Mass number = protons + neutrons = 58 + 33 = 91
The subscript is the atomic number which is 58. The notation is written in the picture attached.
Answer:
The partial pressure of NO2 = 0.152 atm
Explanation:
Step 1: Data given
Pressure NO2 = 0.500 atm
Total pressure at equilibrium = 0.674 atm
Step 2: The balanced equation
2NO2(g) → 2NO(g) + O2(g)
Step 3: The initial pressure
pNO2 = 0.500 atm
pNO = 0 atm
p O2 = 0 atm
Step 4: Calculate pressure at the equilibrium
For 2 moles NO2 we'll have 2 moles NO and 1 mol O2
pNO2 = 0.500 - 2x atm
pNO =2x atm
pO2 = xatm
The total pressure = p(total) = p(NO2) + p(NO) + p(O2)
p(total) = (0.500 - 2x) + 2x + x= 0.674 atm
0.500 + x = 0.674 atm
x = 0.174 atm
This means the partial pressure of NO2 = 0.500 - 2*0.174 = 0.152 atm
Reactions of Ethyl-3-pentenoate with all given reagents are given below.
Reaction with H₂ / Pd:
The non-polar double bond present in Ethyl-3-pentenoate is reduced to saturated chain. This reagent can not reduce the carbonyl group.
Reaction with NaBH₄: Sodium Borohydride is a weak reducing agent at compared to LiAlH₄. It can only reduce aldehydes and Ketones to corresponding alcohols.
Reaction with LiAlH₄: Lithium Aluminium hydride is a strong reducing agent. It can reduce all types of carbonyl compounds to corresponding alcohols, But, it can not reduce non-polar double bonds like alkenes and alkynes.
Result: The correct answer is
Option-A (Highlighted RED below).