Answer: 2-Phenyl-2-Penetene on ozonolysis <span>yields acetophenone and propanal.
Explanation: The tricky way to solve such questions is to simply break the double bond in alkene and place oxygen atom at each broken half double bond making it carbonyl group. The reaction of given statement is as follow,</span>
The best and most correct answer among the choices provided by your question is the third choice or letter C.
The best model of a water <span>molecule would be: </span><span>Two small, plastic balls attached to a larger plastic ball by toothpicks</span>
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
<u>Given:</u>
Concentration of Ba(OH)2 = 0.348 M
<u>To determine:</u>
pOH of the above solution
<u>Explanation:</u>
Based on the stoichiometry-
1 mole of Ba(OH)2 is composed of 1 mole of Ba2+ ion and 2 moles of OH- ion
Therefore, concentration of OH- ion = 2*0.348 = 0.696 M
pOH = -log[OH-] = - log[0.696] = 0.157
Ans: pOH of 0.348M Ba(OH)2 is 0.157
The trick for this problem is to understand atomic mass: the fact that different atoms have different masses. What we need to do is add up all the atomic masses of the compound and work out the ratio of mass of water to the mass of sodium carbonate. Atomic masses are often given for each atom in the periodic table, but you can look them up on google too.
You can do this by adding up individual atoms for each molecule, or you can shortcut and lookup the molar mass of the compound (i.e.the task already done for you).
The molar mass of water is 18.01g/mole so for 10 moles of water we have a mass of 180.1g.
The molar mass of sodium carbonate is 106g/mole (google).
So the total mass of the sodium carbonate decahydrate compound is 180.1+106 = 286.1g, of which water would make up 180.1g, so the percentage of water is is 180.1/286.1 = 0.629, so we can round this to 63%
:)
Answer:
Four moles of the cation
Explanation:
2Rb2CrO4(s)<--------> 4Rb^+(aq) + 2CrO4^2-(aq)
Now looking at the reaction equation, it can be seen that one mole of rubidium chromate contains two moles of rubidium ions and one mole of chromate ions.
The dissolution of two moles of rubidium chromate should then yield four moles of rubidium ions and two moles of chromate ions since the ratio of ions present is 2:1.
This explains the reaction equation written above for the dissolution of two moles of rubidium chromate as shown.