Answer:
Explanation:
The first law is An object won't move by itself, and once in motion, it won't stop unless some force acts upon it. With this being said when the trumpet is at his side and he is not holding it will not move not until he lets go of it.
Answer:
81°C.
Explanation:
To solve this problem, we can use the relation:
<em>Q = m.c.ΔT,</em>
where, Q is the amount of heat released from water (Q = - 1200 J).
m is the mass of the water (m = 20.0 g).
c is the specific heat capacity of water (c of water = 4.186 J/g.°C).
ΔT is the difference between the initial and final temperature (ΔT = final T - initial T = final T - 95.0°C).
∵ Q = m.c.ΔT
∴ (- 1200 J) = (20.0 g)(4.186 J/g.°C)(final T - 95.0°C ).
(- 1200 J) = 83.72 final T - 7953.
∴ final T = (- 1200 J + 7953)/83.72 = 80.67°C ≅ 81.0°C.
<em>So, the right choice is: 81°C.</em>
Answer: -
6
Explanation: -
The given unbalanced chemical equation is As + NaOH -- > Na3AsO3 + H2
We see there 3 sodium on the right side from Na3AsO3.
But there are only 1 sodium on the left from NaOH.
So we multiply NaOH by 3.
As + 3 NaOH -- > Na3AsO3 + H2
Now we see the number of Hydrogen on the left is 3.
But the number of hydrogens is 2 on the left.
So, we multiply to get both sides 6 hydrogen.
As + 6NaOH -- > Na3AsO3 + 3 H2
Rebalancing for Na,
As + 6NaOH -- > 2Na3AsO3 + 3 H2.
Finally balancing As,
2 As + 6 NaOH -- > 2Na3AsO3 + 3H2
The coefficient of the NaOH molecule in the balanced reaction is thus 6
Answer:
29.98kg
Explanation:
12.0 gallons * (3.78541178 liters/gallon) * (1000 mL/liter) * (0.66 g/mL) * (1 kg/1000 g) = 29.98 kg
FeSO₄*7H₂O(s) = FeSO₄(s) + 7H₂O(g)
M(FeSO₄*7H₂O)=278.0 g/mol
M(FeSO₄)=151.9 g/mol
m(FeSO₄*7H₂O)/M(FeSO₄*7H₂O)=m(FeSO₄)/M(FeSO₄)
m(FeSO₄)=M(FeSO₄)m(FeSO₄*7H₂O)/M(FeSO₄*7H₂O)
m(FeSO₄)=151.9*100.0/278.0=54.6 g
m(FeSO₄)=54.6 g