Specific heat is the amount of heat absorb or released by a substance to change the temperature to one degree Celsius. To determine the specific heat, we use the expression for the heat absorbed by the system. Heat gained or absorbed in a system can be calculated by multiplying the given mass to the specific heat capacity of the substance and the temperature difference. It is expressed as follows:
Heat = mC(T2-T1)
By substituting the given values, we can calculate for C which is the specific heat of the material.
2510 J = .158 kg ( 1000 g / 1 kg) (C) ( 61.0 - 32.0 °C)C = 0.5478 J / g °C
Answer:
82.9 mL
Explanation:
1. Volume of silver

2. Volume of gold

3. Total volume of silver and gold
V = 4.766 mL + 2.591 mL = 7.36 mL
4 New reading of water level
V = 75.5 mL + 7.36 mL = 82.9 mL
Answer:
The answer to your question is 50 moles of O₂
Explanation:
Balanced Chemical reactions
1.- N₂(g) + 3H₂ (g) ⇒ 2NH₃ (g)
2.- 4NH₃ (g) + 5O₂(g) ⇒ 4NO (g) + 6H₂O (l)
moles of N₂(g) = 20 moles
moles of O₂(g) = ?
Process
1.- Calculate the moles of NH₃
1 mol of N₂ ------------- 2 moles of NH₃
20 moles of N₂ --------- x
x = (20 x 2) / 1
x = 40 moles of NH₃
2.- Calculate the moles of O₂
4 moles of NH₃ -------------- 5 O₂
40 moles of NH₃ ------------ x
x = (40 x 5) / 4
x = 200 / 4
x = 50 moles of O₂
Answer:
C : t-BuOMe
Explanation:
The tert -butanol is a tertiary alcohol and when chloride ion attacks the carbocation, it forms t-BuCl.
The reaction of tert-butyl chloride or t-BuCl ((CH3)3C−Cl) with methanol and MeOH (CH3−OH) gives the product tert-Butyl methyl ether or t-BuOMe (CH3)3C−OCH3:
(CH3)3C−Cl + CH3−OH => (CH3)3C−OCH3 + HCl
Hence, the correct asnwer is C : t-BuOMe
Answer
5
Explanation:
We can go about this using the percentage compositions.
First, we calculate the percentage composition of the copper sulphate. This is obtainable by using the mass.
0.96/1.5 * 100 = 64%
Hence the percentage by mass of the water present is 36%
The molar mass of the anhydrous sulphate is 64 + 32 +4(16) = 160g/mol
The molar mass of the water is 2(1) + 16 = 18g/mol
Not forgetting that it is in multiples of x, the total molar mass of the water is 18x moles
The total mass of the copper sulphate hydrate is 160+ 18x
Now how do we get x? Like it is said earlier, the percentage composition is constant.
Hence, 64/100 * (160 + 18x) = 160
16000 = 64(160 + 18x)
16000 = 10,240 + 1152x
16,000 - 10,240 = 1152x
1152x = 5760
x = 5760/1152
x = 5