Answer:
There were 0.00735 moles Pb^2+ in the solution
Explanation:
Step 1: Data given
Volume of the KI solution = 73.5 mL = 0.0735 L
Molarity of the KI solution = 0.200 M
Step 2: The balanced equation
2KI + Pb2+ → PbI2 + 2K+
Step 3: Calculate moles KI
moles = Molarity * volume
moles KI = 0.200M * 0.0735L = 0.0147 moles KI
Ste p 4: Calculate moles Pb^2+
For 2 moles KI we need 1 mol Pb^2+ to produce 1 mol PbI2 and 2 moles K+
For 0.0147 moles KI we need 0.0147 / 2 = 0.00735 moles Pb^2+
There were 0.00735 moles Pb^2+ in the solution
Answer: The workdone W = 505J
Explanation:
Applying the pressure-volume relationship
W= - PΔV
Where negative sign indicates the power is being delivered to the surrounding
W = - 1.0atm * ( 5.88 - 0.9)L
= - 1.0atm * (4.98)
W = -4.98 atmL
Converting to Joules
1atmL = 101.325J
-4.98atmL = x joules.
Work done in J = -4.98 * 101.325
W= -505J
Therefore the workdone is -505J
Answer:
The impurity which is present in the solution of copper sulphate (CuSO4) is determined by the an instrument known as spectrophotometer.
Explanation:
Spectrophotometer is a device or an instrument which is used to determine the concentration of a chemical by measuring the detection of light intensity that is coming from the solution. If the solution of copper sulphate is checked through spectrophotometer, we can can determined or measure the amount of copper sulphate and the impurity in the solution.
M=11.20 g
m(H₂)=0.6854 g
M(H₂)=2.016 g/mol
M(Mg)=24.305 g/mol
M(Zn)=65.39 g/mol
w-?
m(Mg)=wm
m(Zn)=(1-w)m
Zn + 2HCl = ZnCl₂ + H₂
m₁(H₂)=M(H₂)m(Zn)/M(Zn)=M(H₂)(1-w)m/M(Zn)
Mg + 2HCl = MgCl₂ + H₂
m₂(H₂)=M(H₂)m(Mg)/M(Mg)=M(H₂)wm/M(Mg)
m(H₂)=m₁(H₂)+m₂(H₂)
m(H₂)=M(H₂)(1-w)m/M(Zn)+M(H₂)wm/M(Mg)=M(H₂)m{(1-w)/M(Zn)+w/M(Mg)}
m(H₂)=M(H₂)m{(1-w)/M(Zn)+w/M(Mg)}
(1-w)/M(Zn)+w/M(Mg)=m(H₂)/{M(H₂)m}
1/M(Zn)-w/M(Zn)+w/M(Mg)=m(H₂)/{M(H₂)m}
w(1/M(Mg)-1/M(Zn))=m(H₂)/{M(H₂)m}-1/M(Zn)
w=[m(H₂)/{M(H₂)m}-1/M(Zn)]/(1/M(Mg)-1/M(Zn))
w=0.583 (58.3%)