<span>A 50-gram sample with a half-life of 12 days will have a remaining mass of 25 grams after its 12-day half-life.
Every cycle of a half-life, the sample will lose half of its mass, so if the half-life, itself, is 12 days and the time period passing is 12 days, one half-life has passed and the material will be halved.</span>
Can be produced from a variety of material, including , it’s at a C or D.
Answer:
7.46 g
Explanation:
From the balanced equation, 2 moles of Mg is required for 2 moles of MgO.
The mole ratio is 1:1
mole = mass/molar mass
mole of 4.50 g Mg = 4.50/24.3 = 0.185 mole
0.185 mole Mg will tiled 0.185 MgO
Hence, theoretical yield of MgO in g
mass = mole x molar mass
0.185 x 40.3 = 7.46 g
Answer:
The H+ (aq) concentration of the resulting solution is 4.1 mol/dm³
(Option C)
Explanation:
Given;
concentration of HA,
= 6.0mol/dm³
volume of HA,
= 25.0cm³, = 0.025dm³
Concentration of HB,
= 3.0mol/dm³
volume of HB,
= 45.0cm³ = 0.045dm³
To determine the H+ (aq) concentration in mol/dm³ in the resulting solution, we apply concentration formula;

where;
is initial concentration
is initial volume
is final concentration of the solution
is final volume of the solution

Therefore, the H+ (aq) concentration of the resulting solution is 4.1 mol/dm³
N=3.5 mol
c=3.5 mol/L
n=cv
v=n/c
v=3.5/3.5=1.0 L
A) 1.0 liter of solution