It is advisable to wear long sleeve when when a student is working in a chemistry lab so that to protect arms from lab chemicals. when someone enter the chemistry lab to wort or to study should be well prepared with appropriate gears and security measure to avoid injury.
Answer:
4.5 kg/L
Explanation:
Density is 4.5g/mL and it means that in 1 mL of volume, the mass contained is 4.5 g.
Let's make a rule of three
1L = 1000 mL
1 mL has a mass of 4.5 g
1000 mL would have 4500 g
Our new density would be 4500 g/L, but we may convert the g to kg
1 kg / 1000 g . 4500 g = 4.5 kg
In conclusion 4.5 g/mL = 4.5 kg/L
Hello there!
To determine the fraction of the hydrogen atom's mass that is in the nucleus, we have to keep in mind that
a Hydrogen atom has 1 proton and 1 electron.
Protons are in the nucleus while electrons are in electron shells surrounding the nucleus.
The mass of the nucleus will be equal to the mass of 1 proton and we can express the fraction as follows:

So, the fraction of the hydrogen atom's mass that is in the nucleus is
0,9995. That means that almost all the mass of this atom is at the nucleus.
Have a nice day!
Answer:

Explanation:
Hello,
In this case, the undergoing chemical reaction is:

Next, we identify the limiting reactant by computing the moles of magnesium oxide yielded by 3.86 g of magnesium and 155 mL of oxygen at the given conditions via their 2:1:2 mole ratios and the ideal gas equation:

It means that the limiting reactant is the oxygen as it yields the smallest amount of magnesium oxide. Next, we compute the mass of magnesium consumed the oxygen only:

Thus, the mass in excess is:

Regards!
First calculate the moles of N2 and H2 reacted.
moles N2 = 27.7 g / (28 g/mol) = 0.9893 mol
moles H2 = 4.45 g / (2 g/mol) = 2.225 mol
We can see that N2 is the limiting reactant, therefore we
base our calculation from that.
Calculating for mass of N2H4 formed:
mass N2H4 = 0.9893 mol N2 * (1 mole N2H4 / 1 mole N2) * 32
g / mol * 0.775
<span>mass N2H4 = 24.53 grams</span>