Correct answer is
<span>D. One atom accepts electrons from another.</span>
Answer:- 64015 J
Solution: There is 4250 mL of water in the calorimeter at 22.55 degree C.
density of water is 1 g per mL.
So, the mass of water =
= 4250 g
Final temperature of water after adding the hot copper bar to it is 26.15 degree C.
So,
for water = 26.15 - 22.55 = 3.60 degree C
Specific heat for water is 4.184 
The heat gained by water is calculated by using the formula:

where, q is the heat energy, m is mass and c is specific heat.
Let's plug in the values in the formula and do the calculations:

q = 64015 J
So, 64015 J of heat is gained by the water.
Answer:
Less than
Explanation:
The process of dissolution occurs as a kind of "tug of war". On one side are the solute-solute and solvent-solvent interaction forces, while on the other side are the solute-solvent forces.
Only when the solute-solvent forces are strong enough to overcome the pre-mixing forces do they overcome the "tug of war", and thus dissolution occurs.
Thus, it is concluded that the interaction forces between solute particles and solvent particles before they are combined are less than the interaction forces after dissolution.
Answer:
Ka = [H₃O⁺] [SO₃²⁻] / [HSO₃⁻]
Kb = [OH⁻] [H₂SO₃] / [HSO₃⁻]
Explanation:
An amphoteric substance as HSO₃⁻ is a substance that act as either an acid or a base. When acid:
HSO₃⁻(aq) + H₂O(l) ⇄ H₃O⁺(aq) + SO₃²⁻(aq)
And Ka, the acid dissociation constant is:
<h3>Ka = [H₃O⁺] [SO₃²⁻] / [HSO₃⁻]</h3><h3 />
When base:
HSO₃⁻(aq) + H₂O(l) ⇄ OH⁻(aq) + H₂SO₃(aq)
And kb, base dissociation constant is:
<h3>Kb = [OH⁻] [H₂SO₃] / [HSO₃⁻]</h3>