Answer:
El volumen del cuerpo es el mismo al comienzo de la experiencia.
Explicación:
El volumen del cuerpo es el mismo al principio porque el volumen no cambia si la temperatura permanece igual. Si cambiamos la temperatura i. mi. Al aumentar la temperatura, las moléculas comienzan a expandirse y se produce un aumento de volumen mientras que cuando disminuimos la temperatura, las moléculas de esa sustancia comienzan a contraerse y el volumen de esa sustancia disminuye. Entonces concluimos que el volumen depende de la temperatura.
Answer:
AC₄ will precipitate out first.
Explanation:
A solid will precipitate out if the ionic product of the solution exceeds the solubility product.
Let us check the ionic product
a) A₂B₃
Ionic product = [A]²[B]³
[A] = say "s"
[B] = 0.05 , [B]³ = (0.05)³ = 0.000125
2.3 X 10⁻⁸ = [A]²(0.000125)
[A] = 0.0136
b) AC₄
Ionic product = [A] [C]⁴
[A] = "s"
[A][0.05]⁴ = 4.10 X 10⁻⁸
[A]=0.00656 M
So for ionic product to exceed solubility product, we need less concentration of A in case of AC₄.
Answer:
A) ∆Suniv >0, ∆G<0, T∆Suniv >0.
Explanation:
The connection between entropy and the spontaneity of a reaction is expressed by the <u>second law of thermodynamics</u><u>: The entropy of the universe increases in a spontaneous process and remains unchanged in an equilibrium process</u>.
Mathematically, we can express the second law of thermodynamics as follows:
For a spontaneous process: ΔSuniv = ΔSsys + ΔSsurr > 0
Therefore, the second law of thermodynamics tells us that a spontaneous reaction increases the entropy of the universe; that is, ΔSuniv > 0.
If we want spontaneity expressed only in terms of the properties of the system (ΔHsys and ΔSsys), we use the following equation:
-TΔSuniv = ΔHsys - TΔSsys < 0
That means that T∆Suniv >0.
This equation says that for a process carried out at constant pressure and temperature T, if the changes in enthalpy and entropy of the system are such that <u>ΔHsys - TΔSsys is less than zero, the process must be spontaneous.</u>
Finally, if the change in free energy is less than zero (ΔG<0), the reaction is spontaneous in the forward direction.
Answer:
The two constitutionally isomeric compounds that result from the reaction between sodium nitrite (NaNO2) and 2−Iodooctane are the following:
Answer:
The density of O₂ gas is 1.71 
Explanation:
Density is a quantity that allows you to measure the amount of mass in a given volume of a substance. So density is defined as the quotient between the mass of a body and the volume it occupies:

An ideal gas is characterized by three state variables: absolute pressure (P), volume (V), and absolute temperature (T). The relationship between them constitutes the ideal gas law, an equation that relates the three variables if the amount of substance, number of moles n, remains constant and where R is the molar constant of the gases:
P * V = n * R * T
So, you can get:

The relationship between number of moles and mass is:

Replacing:


So:

Knowing that 1 mol of O has 16 g, the molar mass of O₂ gas is 32
.
Then:

In this case you know:
- P=1.27 atm
- molar mass of O₂= 32
.
- R= 0.0821

- T= 16 °C= 289 °K (0°C= 273°K)
Replacing:

Solving:
density= 1.71 
<u><em>The density of O₂ gas is 1.71 </em></u>
<u><em></em></u>