Answer: The correct answer is "B" two bonding domains(or bonding pairs) or two non bonding domains(or lone pairs)
Explanation:
Molecular geometry/structure is a three dimensional shape of a molecule. It is basically an arrangement of atoms in a molecule.It is determined by the central atom, its surrounding atoms and electron pairs.According to VSEPR theory, there are 5 basic shapes of a molecule: linear, trigonal planar, tetrahedral, trigonal bipyramidal and octahedral.
A)Four bonding domains and zero non bonding domains: shape is tetrahedral and bond angle is 109.5°
B)Two bonding domains and two non bonding domains(lone pairs): shape is bent and bond angle is 104.5°
C)Three bonding domains and one non bonding domain: shape is trigonal pyramidal and bond angle is 107°
D)Two bonding domain and zero non bonding domain: shape is linear and bond angle is 107°
E)Two bonding domain and one non bonding domain: bent shape and bond angle is 120°
F)Three bonding domains and zero nonbonding domain: shape is trigonal planar and bond angle is 120°
Hence Two bonding domains and two non bonding domains have the smallest bond angle.
The ideal gas equation is;
PV = nRT; therefore making P the subject we get;
P = nRT/V
The total number of moles is 0.125 + 0.125 = 0.250 moles
Temperature in kelvin = 273.15 + 18 = 291.15 K
PV = nRT
P = (0.250 × 0.0821 )× 291.15 K ÷ (7.50 L) = 0.796 atm
Thus, the pressure in the container will be 0.796 atm
Answer is: selenium (Se).
1) electron configuration: ₃₄Se 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4sp⁴.
2) ₃₃As 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4sp³.
3) ₃₆Kr 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4sp⁶.
4) ₃₁Ga 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4sp¹.
Valence electrons of selenium are 4s²4sp⁴.
Answer:
The molarity of the acid HX is 6.0 M.
Explanation:
We determine the amount of moles of KOH used to neutralize the acid:
=0.12 moles KOH
Then, we calculate the amount of moles of acid:
0.12 moles KOH×
=0.12 moles HX
The molarity of HX is:
=6.0 M
Answer:
The boiling point of water at 550 torr will be 91 °C or 364 Kelvin
Explanation:
Step 1: Data given
Pressure = 550 torr
The heat of vaporization of water is 40.7 kJ/mol.
Step 2: Calculate boiling point
⇒ We'll use the Clausius-Clapeyron equation
ln(P2/P1) = (ΔHvap/R)*(1/T1-1/T2)
ln(P2/P1) = (40.7*10^3 / 8.314)*(1/T1 - 1/T2)
⇒ with P1 = 760 torr = 1 atm
⇒ with P2 = 550 torr
⇒ with T1 = the boiling point of water at 760 torr = 373.15 Kelvin
⇒ with T2 = the boiling point of water at 550 torr = TO BE DETERMINED
ln(550/760) = 4895.4*(1/373.15 - 1/T2)
-0.3234 = 13.119 - 4895.4/T2
-13.4424= -4895.4/T2
T2 = 364.2 Kelvin = 91 °C
The boiling point of water at 550 torr will be 91 °C or 364 Kelvin