<span>Answer Choices:
A) Ca
B) O
C) Cl
D) s</span>
<span>the formula is Li2X, so the charge on the X anion must be 2-
the ion is X2- elements in group 6A form monatomic ions with a 2- charge. In your list that is O or Po
If the element can accomodate 12 electrons then it can have an expanded octet. Only elements in period 3 and higher can have expanded octets.
So you are looking for a group 6A element in period 3 or higher.
cA would not intereact with LI BECAUSE ITS A METAL The only element that fits the bill is D) S</span>
Answer:
B)
Explanation:
It is the theme of the passage.
Answer:
k = 23045 N/m
Explanation:
To find the spring constant, you take into account the maximum elastic potential energy that the spring can support. The kinetic energy of the car must be, at least, equal to elastic potential energy of the spring when it is compressed to its limit. Then, you have:
(1)
M: mass of the car = 1050 kg
k: spring constant = ?
v: velocity of the car = 8 km/h
x: maximum compression of the spring = 1.5 cm = 0.015m
You solve the equation (1) for k. But first you convert the velocity v to m/s:


The spring constant is 23045 N/m
Answer:
The pH of 0.1 M BH⁺ClO₄⁻ solution is <u>5.44</u>
Explanation:
Given: The base dissociation constant:
= 1 × 10⁻⁴, Concentration of salt: BH⁺ClO₄⁻ = 0.1 M
Also, water dissociation constant:
= 1 × 10⁻¹⁴
<em><u>The acid dissociation constant </u></em>(
)<em><u> for the weak acid (BH⁺) can be calculated by the equation:</u></em>

<em><u>Now, the acid dissociation reaction for the weak acid (BH⁺) and the initial concentration and concentration at equilibrium is given as:</u></em>
Reaction involved: BH⁺ + H₂O ⇌ B + H₃O+
Initial: 0.1 M x x
Change: -x +x +x
Equilibrium: 0.1 - x x x
<u>The acid dissociation constant: </u>![K_{a} = \frac{\left [B \right ] \left [H_{3}O^{+}\right ]}{\left [BH^{+} \right ]} = \frac{(x)(x)}{(0.1 - x)} = \frac{x^{2}}{0.1 - x}](https://tex.z-dn.net/?f=K_%7Ba%7D%20%3D%20%5Cfrac%7B%5Cleft%20%5BB%20%5Cright%20%5D%20%5Cleft%20%5BH_%7B3%7DO%5E%7B%2B%7D%5Cright%20%5D%7D%7B%5Cleft%20%5BBH%5E%7B%2B%7D%20%5Cright%20%5D%7D%20%3D%20%5Cfrac%7B%28x%29%28x%29%7D%7B%280.1%20-%20x%29%7D%20%3D%20%5Cfrac%7Bx%5E%7B2%7D%7D%7B0.1%20-%20x%7D)





<u>Therefore, the concentration of hydrogen ion: x = 3.6 × 10⁻⁶ M</u>
Now, pH = - ㏒ [H⁺] = - ㏒ (3.6 × 10⁻⁶ M) = 5.44
<u>Therefore, the pH of 0.1 M BH⁺ClO₄⁻ solution is 5.44</u>
Answer:
b. 186 g
Explanation:
Step 1: Write the balanced equation.
4 NH₃(g) + 6 NO(g) → 5 N₂(g) + 6 H₂O(l)
Step 2: Calculate the moles corresponding to 145 g of N₂
The molar mass of nitrogen is 28.01 g/mol.

Step 3: Calculate the moles of NO required to produce 5.18 moles of N₂
The molar ratio of NO to N₂ is 6:5.

Step 4: Calculate the mass corresponding to 6.22 moles of NO
The molar mass of NO is 30.01 g/mol.
