Answer: 19.4 mL Ba(OH)2
Explanation:
H2(g) + Cl2(g) --> 2HCl(aq) (make sure this equation is balanced first)
At STP, 1 mol gas = 22.4 L gas. Use this conversion factor to convert the 100. mL of Cl2 to moles.
0.100 L Cl2 • (1 mol / 22.4 L) = 0.00446 mol Cl2
Use the mole ratio of 2 mol HCl for every 1 mol Cl2 to find moles of HCl produced.
0.00446 mol Cl2 • (2 mol HCl / 1 mol Cl2) = 0.00892 mol HCl
HCl is a strong acid and Ba(OH)2 is a strong base so both will completely ionize to release H+ and OH- respectively. You need 0.00892 mol OH- to neutralize all of the HCl. Note that one mole of Ba(OH)2 contains 2 moles of OH-.
0.00892 mol OH- • (1 mol Ba(OH)2 / 2 mol OH-) • (1 L Ba(OH)2 / 0.230 M Ba(OH)2) = 0.0194 L = 19.4 mL Ba(OH)2
ANSWER: The two skills that Wade will need to excel in the career of a Radiologist are:
1. Interpersonal skills to talk to patients and help them feel comfortable: This skill important because patients often are afraid of getting detected by a disease. Few patients also fear of getting tested by the heavy and complicated machineries. A radiologist's interpersonal skill will calm the patient and his attendant and will make them feel relieved.
2. Technical skills to know how to use the machinery and equipment needed for the job: Radiologist's primary duty is to operate the machineries in order to diagnose a patient correctly. A radiologist can not afford to be an amateur as he will either not be able to detect a disease or may raise a false alarm of a person having a disease.
Answer:
sodium has got ionic bonds that are weak
compared to hydrogen covalent bonds that are strong
Answer:
44Kj
Explanation:
These are the equations for the reaction described in the question,
Vaporization which can be defined as transition of substance from liquid phase to vapor
H2(g)+ 1/2 O2(g) ------>H2O(g). Δ H
-241.8kj -------eqn(1)
H2(g)+ 1/2 O2(g) ------>H2O(l).
Δ H =285.8kj ---------eqn(2)
But from the second equation we can see that it moves from gas to liquid, we we rewrite the equation for vaporization of water as
H2O(l) ------>>H2O(g)---------------eqn(3)
But the equation from eqn(2) the eqn does go with vaporization so we can re- write as
H2O ------> H2(g)+ 1/2 O2(g)
Δ H= 285.8kj ---------------eqn(4)
To find Delta h of the vaporization of water at these conditions, we sum up eqn(1) and eqn(4)
Δ H=285.8kj +(-241.8kj)= 44kj