Answer:
NaI > Na2SO4 > Co Br3
meaning that NaI has the highest freezing point, and Co Br3 has the lowest freezing point.
Explanation:
The freezing point depression is a colligative property.
That means that it depends on the number of solute particles dissolved.
The formula to calculate the freezing point depression of a solution of a non volatile solute is:
ΔTf = i * Kf * m
Where kf is a constant, m is the molality and i is the van't Hoff factor.
Molality, which is number of moles per kg of solvent, counts for the number of moles dissolved and the van't Hoff factor multipllies according for molecules that dissociate.
The higher the number of molecules that dissociate, the higher the van't Hoff, the greater the freezing point depression and the lower the freezing point.
As the question states that you assume equal concentrations (molality) and complete dissociation you just must find the number of ions generated by each solute, in this way:
NH4 I → NH4(+) + I(-) => 2 ions
Co Br3 → Co(+) + 3 Br(-) => 4 ions
Na2SO4 → 2Na(+) + SO4(2-) => 3 ions.
So, Co Br3 is the solute that generate more particles and that solution will exhibit the lowest freezing point among the options given, Na2SO4 is next and the NaI is the third. Ordering the freezing point from higher to lower the rank is NaI > Na2SO4 > CoBr3, which is the answer given.
Answer:
10
Explanation:
pH is defined as the negative logarithm of the concentration of hydrogen ions.
Thus,
pH = - log [H⁺]
Thus, from the formula, more the concentration of the hydrogen ions or more the acidic the solution is, the less is the pH value of the solution.
Thus, solution with pH = 3 will be more acidic than solution with pH =4
Thus, concentration of the [H⁺] when pH =3
3 = - log [H⁺]
[H⁺] = 10⁻³ M
For pH = 4, [H⁺] = 10⁻⁴ M
<u>hence, pH = 3 is 10 times more acidic than pH = 4</u>
ΔS =S(products) -S(reactants)
Where ΔS is the change of entropy in a reactions
a. ΔS = (2) - (2+1) = -1
b. ΔS = (1+1) -(1) = 1
c. ΔS = (1+2) - (1) = 2
d. ΔS = (2) - (2+1) = -1
e. ΔS = (1) - (1) = 0
ΔS is negative for reaction a. and d.
Answer : The expected coordination number of NaBr is, 6.
Explanation :
Cation-anion radius ratio : It is defined as the ratio of the ionic radius of the cation to the ionic radius of the anion in a cation-anion compound.
This is represented by,

When the radius ratio is greater than 0.155, then the compound will be stable.
Now we have to determine the radius ration for NaBr.
Given:
Radius of cation,
= 102 pm
Radius of cation,
= 196 pm

As per question, the radius of cation-anion ratio is between 0.414-0.732. So, the coordination number of NaBr will be, 6.
The relation between radius ratio and coordination number are shown below.
Therefore, the expected coordination number of NaBr is, 6.