Answer:
The time taken for the cross mark to disappear decreases steadily down the column.
Explanation:
Now if we look at the data provided, we will discover that the volume of the HCl was held constant while the volume of the thiosulphate was increased steadily and the volume of water decreased steadily.
Recall that a system is more concentrated when it contains less volume of water and more volume of reactants. Hence as the volume of water in the system is being reduced, the concentration of reactants is increased.
It has been established that an increase in the concentration of reactants lead to an increase in the rate of reaction. The disappearance of the cross shows the completion of the reaction between HCl and thiosulphate. The faster or slower the cross disappears, the faster or slower the rate of reaction.
Since increase in concentration of reactants increases the rate of reaction, it is observed that as the volume of the thiosulphate increases (reactant concentration increases) the cross disappears faster (rate of reactant increases). Hence as the volume of thiosulphate increases, it takes a shorter time for the cross to disappear. This implies that the time column in the table (refer to the question) will decrease steadily as the volume of thiosulphate increases.
<h3>
Answer:</h3>
0.699 mole CaCl₂
<h3>
Explanation:</h3>
To get the number of moles we use the Avogadro's number.
Avogadro's number is 6.022 x 10^23.
But, 1 mole of a compound contains 6.022 x 10^23 molecules
In this case;
we are given 4.21 × 10^23 molecules of CaCl₂
Therefore, to get the number of moles
Moles = Number of molecules ÷ Avogadro's constant
= 4.21 × 10^23 molecules ÷ 6.022 x 10^23 molecules/mole
= 0.699 mole CaCl₂
Hence, the number of moles is 0.699 mole of CaCl₂
Answer:
The cuvette was blank with the solution so that the spectrometer will only read the solute absorbance. This also ensures that the spectrometer will ignore other absorbance fluctuations that normally occur due to the chemical make-up of water. The spectrometer only considered the absorbance of
as indicated on the spectrum. The reaction between the
and the
are both clear liquids that form the orange liquid product
which creates the absorbance spectrum. Because the color of the solution is orange, it reflects this and similar colors while absorbing blueish hues. We can find the absorption of only the
by pre-rinsing the cuvette with each solution we intend to measure before placing it in the spectrometer. Also, wipe each cuvette with a kimwipe to remove all fingerprints that could effect the data collection.
Explanation:
The cuvette was blank with the solution so that the spectrometer will only read the solute absorbance. This also ensures that the spectrometer will ignore other absorbance fluctuations that normally occur due to the chemical make-up of water. The spectrometer only considered the absorbance of
as indicated on the spectrum.
Answer: Your friend is incorrect.
Explanation: If we have an object or something that isn’t moving, (let’s say a notebook on a desk). If there is change, and the notebook moves, there is acceleration. Force = Mass times acceleration, f = m*a. There has to be a force, first of all. If you touched the notebook and moved it, some of your energy is transferred and now the notebook has kinetic energy. If our system is you and the notebook, the total energy doesn’t change. the energy is transferred, but doesn’t change. Your friend is not correct. Please give brainliest hope this helped!