<span>λν = c
c= speed of light= 3.0x10^8 m/s
</span>λ=wavelength
v= frequency
Plug and Chug.
Specific heat is the amount of heat absorb or released by a substance to change the temperature to one degree Celsius. To determine the specific heat, we use the expression for the heat absorbed by the system. Heat gained or absorbed in a system can be calculated by multiplying the given mass to the specific heat capacity of the substance and the temperature difference. It is expressed as follows:
Heat = mC(T2-T1)
By substituting the given values, we can calculate for C which is the specific heat of the material.
2510 J = .158 kg ( 1000 g / 1 kg) (C) ( 61.0 - 32.0 °C)C = 0.5478 J / g °C
Lets organise the data given in the question
[ClO₂] (m) [OH⁻] (m) initial rate (m/s)
<span>0.060 0.030 0.0248
</span><span> 0.020 0.030 0.00276
</span><span> 0.020 0.090 0.00828
rate equation as follows
rate = k [</span>ClO₂]ᵃ [OH⁻]ᵇ
where k - rate constant
we need to find order with respect to ClO₂ therefore lets take the 2 equations where OH⁻ is constant.
1) 0.00276 = k [0.020]ᵃ[0.030]ᵇ
2) 0.0248 = k [0.060]ᵃ[0.030]ᵇ
divide first equation from the second
0.0248/0.00276 = [0.060/0.020]ᵇ
8.99 = 3ᵇ
8.99 rounded off to 9
9 = 3ᵇ
b = 2
order with respect to ClO₂ is 2
Answer:
9
Explanation:
The structure of fluorophore used in the experiments has been drawn in the attachment. And from the drawing counting we can say that there are 9 sp2-hybridized carbon atoms present. Fiuorophores are a fluorescent chemical compound that can re-emit light upon light excitation. Normally used to produce absorbance and emission spectra.