<u>Answer:</u> The chemical equations and equilibrium constant expression for each ionization steps is written below.
<u>Explanation:</u>
The chemical formula of carbonic acid is
. It is a diprotic weak acid which means that it will release two hydrogen ions when dissolved in water
The chemical equation for the first dissociation of carbonic acid follows:

The expression of first equilibrium constant equation follows:
![Ka_1=\frac{[H^+][HCO_3^{-}]}{[H_2CO_3]}](https://tex.z-dn.net/?f=Ka_1%3D%5Cfrac%7B%5BH%5E%2B%5D%5BHCO_3%5E%7B-%7D%5D%7D%7B%5BH_2CO_3%5D%7D)
The chemical equation for the second dissociation of carbonic acid follows:

The expression of second equilibrium constant equation follows:
![Ka_2=\frac{[H^+][CO_3^{2-}]}{[HCO_3^-]}](https://tex.z-dn.net/?f=Ka_2%3D%5Cfrac%7B%5BH%5E%2B%5D%5BCO_3%5E%7B2-%7D%5D%7D%7B%5BHCO_3%5E-%5D%7D)
Hence, the chemical equations and equilibrium constant expression for each ionization steps is written above.
Basis: 100 mL solution
From the given density, we calculate for the mass of the solution.
density = mass / volume
mass = density x volume
mass = (1.83 g/mL) x (100 mL) = 183 grams
Then, we calculate for the mass H2SO4 given the percentage.
mass of H2SO4 = (183 grams) x (0.981) = 179.523 grams
Calculate for the number of moles of H2SO4,
moles H2SO4 = (179.523 grams) / (98.079 g/mol)
moles H2SO4 = 1.83 moles
Molarity:
M = moles H2SO4 / volume solution (in L)
= 1.83 moles / (0.1L ) = 18.3 M
Molality:
m = moles of H2SO4 / kg of solvent
= 1.83 moles / (183 g)(1-0.983)(1 kg/ 1000 g) = 588.24 m
Answer: He did not discuss about any of these.
Explanation: Dalton proposed some of the postulates for his atomic theory. They are:
1) Matter is made up of atoms which are not divisible.
2) Atoms of different elements combine in a fixed ratio to form compounds.
3) The atomic properties of given element are same including mass. This states that all the atoms of an element have same mass but the atoms of different elements have different masses.
4) No atoms are either created or destroyed during a chemical reaction.
5) Atoms of an element are identical in mass, size and other chemical and physical properties.
As it is visible from the postulates, he only discussed only about the atoms but not subatomic particles or isotopes.
Answer:
Trigonal pyramid molecules (three identical bonds)
Explanation:
In trigonal pyramidal molecule like molecule of ammonia , the vector some of intra- molecular dipole moment is not zero because the bonds are not symmetrically oriented . In other molecules , bonds are symmetrically oriented in space so the vector sum of all the internal dipole moment vectors cancel each other to make total dipole moment zero.
<span>
• </span>Volume of the marshmallow:
V = 2.75 in^3 (but, 1 in^3 = 16.39 cm^3)
V = 2.75 × 16.39 cm^3
V = 2.75 × 16.39 cm^3
V = 45.0725 cm^3
• Density:
d = 0.242 g/cm^3
<span>• </span>Mass:
m = d × V
m = (0.242 g/cm^3) × (45.0725 cm^3)
m = (0.242 g/cm^3) × (45.0725 cm^3)
m = 10.907545 g
m ≈ 10.9 g <——<span>— this is the answer.
I hope this helps. =)
</span>