Answer : The final temperature of the solution in the calorimeter is, 
Explanation :
First we have to calculate the heat produced.

where,
= enthalpy change = -44.5 kJ/mol
q = heat released = ?
m = mass of
= 1.52 g
Molar mass of
= 40 g/mol

Now put all the given values in the above formula, we get:


Now we have to calculate the final temperature of solution in the calorimeter.

where,
q = heat produced = 1.691 kJ = 1691 J
m = mass of solution = 1.52 + 35.5 = 37.02 g
c = specific heat capacity of water = 
= initial temperature = 
= final temperature = ?
Now put all the given values in the above formula, we get:


Thus, the final temperature of the solution in the calorimeter is, 
Answer:
2.76 × 10⁻¹¹
Explanation:
I don’t have access to the ALEKS Data resource, so I used a different source. The number may be different from yours.
1. Calculate the free energy of formation of CCl₄
C(s)+ 2Cl₂(g)→ CCl₄(g)
ΔG°/ mol·L⁻¹: 0 0 -65.3
ΔᵣG° = ΔG°f(products) - ΔG°f(reactants) = -65.3 kJ·mol⁻¹
2. Calculate K

T = (25.0 + 273.15) K = 298.15 K

Answer:
The equation for the reaction of one sodium bicarbonate ( NaHCO3 ) molecule with one citric acid (C6H8O7) molecule is the following:
Sodium Bicarbonate + Citric Acid ⇒ Water + Carbon Dioxide + Sodium Citrate
NaHCO3 + C6H8O7 ⇒ 3 CO2 + 3 H2O + Na3C6H5O7
Explanation:
The reaction is in balance, that is, the whole H2CO3 is not finished, but a little bit of this acid is left in the solution. Therefore, when sodium bicarbonate is added to the solution with citric acid, sodium citrate salt (C6H5O7Na3) and carbonic acid (H2CO3) are formed, which is rapidly broken down into water (H2O) and carbonic oxide (CO2).
C6H8O7 + NaHCO3 ⇒ C6H5O7Na3 + 3 H2CO3
C6H5O7Na3 + 3 H2CO3 ⇔ C6H5O7Na3 + 3 H2O + 3 CO2