Answer : The molarity of solution is, 1.00 M
Explanation : Given,
Moles of
= 0.500 mol
Volume of solution = 0.500 L
Molarity : It is defined as the number of moles of solute present in one liter of volume of solution.
Formula used :

Now put all the given values in this formula, we get:

Therefore, the molarity of solution is, 1.00 M
Answer:
Energy transfers from the metal to the water and calorimeter until they are all at room temperature.
Explanation:
CHECK THE COMPLETE QUESTION BELOW;
A metal sample is heated and placed into the water in a calorimeter at room temperature. Which statement best describes how the calorimeter can be used to determine the specific heat capacity of the metal sample?
Energy transfers to the metal from the water and calorimeter until they are all at room temperature
. Energy transfers from the metal to the water and calorimeter until they are all at room temperature.
Energy transfers to the metal from the water and calorimeter until they all reach a single temperature.
Energy transfers from the metal to the water and calorimeter until they all reach a single temperature.
EXPLANATION;
Using calorimeter to determine the specific heat capacity of the metal sample can be associated to the theory of conservation of energy because heat which is a form of energy is been transfer of heat between the metal to the water and the calorimeter, this process will proceed till single temperature is attained.
The change in the amount of temperature of the water in the calorimeter is measured in order to get the difference in heat change of the calorimeter water.
CHANGE IN HEAT CAN BE CALCULATED USING THE FORMULA.
Q = cmΔT where Q is the change in heat , c is the specific heat capacity and ΔT is the change in temperature
Answer:
The temperature difference of the body after 3 hours = 5.16 K
Explanation:
we know that the number of moles of O₂ inhaled are 0.02 mole/min⁻¹
or, 1.2 mole.h⁻¹
The average heat evolved by the oxidation of foodstuffs is then:
⇒ Q avg =
= 7.2 kj.h⁻¹.Kg⁻¹
the heat produced after 3 h would be:
= 7.2 kj. h⁻¹.Kg⁻¹ x 3 h
= 21.6 kj. kg⁻¹
= 21.6 x 10³ j kg⁻¹
We know Qp = Cp x ΔT
Assume the heat capacity of the body is 4.18 J g⁻¹K⁻¹
⇒ ΔT = 
⇒ ΔT = 
⇒ ΔT = 5.16 K
Answer:
D.
The concentration of reactants and the concentration of products are constant.
Explanation:
pls mark as brainliest