Colligative properties are usually used in relation to solutions.
Colligative properties are those properties of solutions, which depend on the concentration of the solutes [molecules, ions, etc.] in the solutions and not on the chemical nature of those chemical species. Examples of colligative properties include: vapour pressure depression, boiling point elevation, osmotic pressure, freezing point depression, etc.
For the question given above, the correct option is D. This is because the statement is talking about freezing point elevation, which is not part of colligative properties.
The heat of combustion for methanol is 727 kj/mol
<em><u>calculation</u></em>
calculate the moles of methanol (CH3OH)
moles = mass/molar mass
molar mass of methanol = 12 +( 1 x3) +16 + 1= 32 g /mol
moles is therefore= 64.0 g / 32 g/mol = 2 moles
Heat of combustion is therefore = 1454 Kj / 2 moles = 727 Kj/mol
NH₃, being a basic gas neutralizes the HNO₃ forming a salt NH₄NO₃
Therefore the correct answer is NH₃ and NH₄NO₃
The solution of which only 32% dissociates to release OH⁻ ions is a weak base. This is because some of the energy is used when the substance reacts with the solution thus some bonds are not broken.
HCl is an acid. This is because it dissociates in water to give H⁺ as the only positively charged ions.
Arrhenius acid increases the concentration of hydrogen ions because it dissociates to release hydrogen ions as the only positively charged ions in the acid. So the answer is TRUE
Arrhenius base dissociates in water to release hydroxide ions as the only negatively charged ions.
NaOH⁺aq⇒Na⁺ ₍aq₎+ OH⁻₍aq₎
The correct values I believe would be a=1 b=-2 and c=-3.