Answer:
1)Carbonated water is saturated with carbon, hence it gives off carbon through bubbles.
2)Adding sugar to water until it no longer dissolves creates a saturated solution.
3)Continuing to dissolve salt in water until it will no longer dissolve creates a saturated solution.
An unsaturated tea and sugar solution would be one into which you could add more sugar and have the sugar still dissolve
Answer:
H₂SO₄
Explanation:
We have a compound formed by 0.475 g H, 7.557 g S, 15.107 g O. In order to determine the empirical formula, we have to follow a series of steps.
Step 1: Calculate the total mass of the compound
Total mass = mass H + mass S + mass O = 0.475 g + 7.557 g + 15.107 g
Total mass = 23.139 g
Step 2: Determine the percent composition.
H: (0.475g/23.139g) × 100% = 2.05%
S: (7.557g/23.139g) × 100% = 32.66%
O: (15.107g/23.139g) × 100% = 65.29%
Step 3: Divide each percentage by the atomic mass of the element
H: 2.05/1.01 = 2.03
S: 32.66/32.07 = 1.018
O: 65.29/16.00 = 4.081
Step 4: Divide all the numbers by the smallest one
H: 2.03/1.018 ≈ 2
S: 1.018/1.018 = 1
O: 4.081/1.018 ≈ 4
The empirical formula of the compound is H₂SO₄.
The answer to this question would be: 3.125%
Half-life is the time needed for a radioactive molecule to decay half of its mass. In this case, the strontium-89 is already gone past 5 half lives. Then, the percentage of the mass left after 5 half-lives should be:
100%*(1/2^5)= 100%/32=3..125%
Answer:
Density = 4.191 gm/L
Explanation:
Given:
Molar mass = 93.89 g/mol
Volume(Missing) = 22.4 L (Approx)
Find:
Density at STP
Computation:
Density = Mass/Volume
Density = 93.89 / 22.4
Density = 4.191 gm/L
Answer: The molar concentration of sulfuric acid in the original sample is 1.943 M
Explanation:
To calculate the molarity of acid, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is 
are the n-factor, molarity and volume of base which is NaOH.
We are given:

Putting values in above equation, we get:


Now to calculate the molarity of original solution:


Thus the molar concentration of sulfuric acid in the original sample is 1.943 M