The question is missing. Here is the complete question.
Which balanced redox reaction is ocurring in the voltaic cell represented by the notation of
?
(a) 
(b) 
(c)
(d) 
Answer: (d) 
Explanation: <u>Redox</u> <u>Reaction</u> is an oxidation-reduction reaction that happens in the reagents. In this type of reaction, reagent changes its oxidation state: when it loses an electron, oxidation state increases, so it is oxidized; when receives an electron, oxidation state decreases, then it is reduced.
Redox reactions can be represented in shorthand form called <u>cell</u> <u>notation,</u> formed by: <em><u>left side</u></em> of the salt bridge (||), which is always the <em><u>anode</u></em>, i.e., its half-equation is as an <em><u>oxidation</u></em> and <em><u>right side</u></em>, which is always <em><u>the cathode</u></em>, i.e., its half-equation is always a <em><u>reduction</u></em>.
For the cell notation: 
Aluminum's half-equation is oxidation:

For Lead, half-equation is reduction:

Multiply first half-equation for 2 and second half-equation by 3:


Adding them:

The balanced redox reaction with cell notation
is

A volumetric flask is used to contain a predetermined volume of substance and only measures that volume, for example 250 ml.
Conical flasks can be used to measure the volume of substances but the accuracy they provide is usually up to 10ml. Conical flasks are used in titrations, reactions where the liquid may boil, and reactions which involve stirring.
Pippettes are of two types, volumetric and graduated. Pippettes are used where high accuracy is required and volumetric pippettes come in as little as 1 ml. Pippettes are usually used in titrations.
Graduated cylinders come in a wide variety of sizes and their accuracy can be down to as much as 1 ml. They are used to contain liquids.
N = 1
l = from 0 to (n-1)
ml = -1... + 1
ms = 1/2 or -1/2
eg = 2s
n = 2, m = 0, n = 0
s = 1/2, -1/2
hope this help
Answer:
2.12×10²³ atoms.
Explanation:
From Avogadro's hypothesis, we understood that 1 mole of any substance contains 6.02×10²³ atoms. This simply means that 1 mole of zirconium also 6.02×10²³ atoms.
Thus, we can obtain the number of atoms present in 0.3521 mole of zirconium as follow:
1 mole of zirconium also 6.02×10²³ atoms.
Therefore, 0.3521 mole of zirconium will contain = 0.3521 × 6.02×10²³ = 2.12×10²³ atoms.
Therefore, 0.3521 mole of zirconium contains 2.12×10²³ atoms.