The answer is C. The payoff of most risks is insignificant.
The only solution you'll need to have for this problem is a periodic table. The columns in the table are called groups, and they are number from the left to the right starting with 1. The rows in the table are called periods which are numbered from the top to bottom starting with 1.
6. Elements that belong to the same group portray similar chemical properties. Therefore, the element in period 4 which is also in group 2 is
<em>Calcium (Ca)</em>.
7. The elements that are striked through with the red slanting lines are the metalloids. All the elements to the left of the metalloids are metals. All the elements to the right are nonmetals. Bromine has a symbol of Br. Since At is a metalloid and located in the same group with Br, the
<em>answer is Astatine (At).</em>8. Tin has the chemical symbol of Sn. The nonmetal that is located in the same group is
<em>Carbon (C)</em>.
9. All the elements in period 6 would have similar properties. The answers could be:
<em>Phosphorus (P), Arsenic (As), Antimony (Sb) and Bismuth (Bi)</em>.
10. Period is row 1 and group 18 is the last column.
<em>The answer is Helium (He).</em>
Answer:
THE CURRENT REQUIRED TO PRODUCE 193000 C OF ELECTRICITY IS 35.74 A.
Explanation:
Equation:
Al3+ + 3e- -------> Al
3 F of electricity is required to produce 1 mole of Al
3 F of electricity = 27 g of Al
If 18 g of aluminium was used, the quantity of electricity to be used up will be:
27 g of AL = 3 * 96500 C
18 G of Al = x C
x C = ( 3 * 96500 * 18 / 27)
x C = 193 000 C
For 18 g of Al to be produced, 193000 C of electricity is required.
To calculate the current required to produce 193 000 C quantity of electricity, we use:
Q = I t
Quantity of electricity = Current * time
193 00 = I * 1.50 * 60 * 60 seconds
I = 193 000 / 1.50 * 60 *60
I = 193 000 / 5400
I = 35.74 A
The cuurent required to produce 193,000 C of electricity by 18 g of aluminium is 35.74 A
Actual question from source:-
A 3.96x10-4 M solution of compound A exhibited an absorbance of 0.624 at 238 nm in a 1.000 cm cuvette. A blank had an absorbance of 0.029. The absorbance of an unknown solution of compound A was 0.375. Find the concentration of A in the unknown.
Answer:
Molar absorptivity of compound A = 
Explanation:
According to the Lambert's Beer law:-
Where, A is the absorbance
l is the path length
is the molar absorptivity
c is the concentration.
Given that:-
c = 
Path length = 1.000 cm
Absorbance observed = 0.624
Absorbance blank = 0.029
A = 0.624 - 0.029 = 0.595
So, applying the values in the Lambert Beer's law as shown below:-

<u>Molar absorptivity of compound A =
</u>