Answer : Total molecules that will be needed to visualize a single egg will be 78500 molecules of dye.
Explanation : As a single egg cell has an approximately diameter of 100 μm.
We can use this formula to calculate area of the cell membrane;
A = π
;
We can take π as 3.14 and we get;
A = 3.14 X
Soving we get;
A = 7850 μ
Here we have to calculate the amount of dye molecules which will be needed for 10 fluorescent molecules / μ
but;
here 1 μ
= 7850 μ
dye molecules.
Therefore, 10 fluorescent molecules will need;
7850 X 10 = 78500 molecules of dye.
Therefore, the answer is 78500 molecules of dye.
Answer:
293.15 K.
Explanation:
It is given that, the room temperature is 20 degrees Celsius.
We need to convert this temperature into kelvin.
The conversion from degrees Celsius to Kelvin is as follows :

We have, 
So,

So, the room temperature is 293.15 kelvin.
Answer:
Equilibrium constant for
is 0.5
Equilibrium constant for decomposition of
is 
Explanation:
dissociates as follows:

initial 0.72 mol 0 0
at eq. 0.72 - 0.40 0.40 0.40
Expression for the equilibrium constant is as follows:
![k=\frac{[PCl_3][Cl_2]}{[PCl_5]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B%5BPCl_3%5D%5BCl_2%5D%7D%7B%5BPCl_5%5D%7D)
Substitute the values in the above formula to calculate equilibrium constant as follows:
![k=\frac{[0.40/1][0.40/1]}{0.32/1} \\=\frac{0.40 \times 0.40}{0.32} \\=0.5](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B%5B0.40%2F1%5D%5B0.40%2F1%5D%7D%7B0.32%2F1%7D%20%5C%5C%3D%5Cfrac%7B0.40%20%5Ctimes%200.40%7D%7B0.32%7D%20%5C%5C%3D0.5)
Therefore, equilibrium constant for
is 0.5
Now calculate the equilibrium constant for decomposition of 
It is given that
is decomposed.
decomposes as follows:

initial 1.0 M 0 0
at eq. concentration of
is:
![[NO_2]_{eq}=1-(0.000066) = 0.999934\ M](https://tex.z-dn.net/?f=%5BNO_2%5D_%7Beq%7D%3D1-%280.000066%29%20%3D%200.999934%5C%20M)
![[NO]_{eq}=6.6 \times 10^{-5}\ M](https://tex.z-dn.net/?f=%5BNO%5D_%7Beq%7D%3D6.6%20%5Ctimes%2010%5E%7B-5%7D%5C%20M)
Expression for equilibrium constant is as follows:
![K=\frac{[NO]^2[O_2]}{[NO_2]^2}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BNO%5D%5E2%5BO_2%5D%7D%7B%5BNO_2%5D%5E2%7D)
Substitute the values in the above expression
![K=\frac{[6.6\times 10^{-5}]^2[3.3 \times 10^{-5}]}{[0.999934]^2} \\=1.79\times 10^{-14}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5B6.6%5Ctimes%2010%5E%7B-5%7D%5D%5E2%5B3.3%20%5Ctimes%2010%5E%7B-5%7D%5D%7D%7B%5B0.999934%5D%5E2%7D%20%5C%5C%3D1.79%5Ctimes%2010%5E%7B-14%7D)
Equilibrium constant for decomposition of
is 
Explanation:
The given data is as follows.
Energy of radiation absorbed by the electron in hydrogen atom = 
As energy is absorbed as a photon. Hence, frequency will be calculated will be as follows.
E = 
=
= 
or,
=
It is known that, 
= 
And, according to De-Broglie equation 
as, p = 
So, 
= 
Now, on squaring both the sides we get the following.
=
=

where, m = mass of electron
So, 
= 
=
J
Since, K.E = 
= 
= 
Thus, we can conclude that kinetic energy acquired by the electron in hydrogen atom is
.
Cadmium chloride is a highly soluble compound. The equation for its dissolution is:
CdCl₂(s) → Cd⁺²(aq) + 2Cl⁻(aq)
This dissociation in water allows for the cadmium and chlorine ions to take part in reactions. This is the reason that solutions of chemicals are prepared when a reaction needs to take place.