Answer:
4.42x10⁻¹⁹ J/molecule
Explanation:
At a double bond, there's sigma and a pi bond, and at a single bond, there's only a sigma bond. Thus, if the energy to break both sigma and pi is 614 kJ/mol, and the energy to break only the sigma bond is 348 kJ/mol, the energy to break only the pi bond is:
E = 614 - 348 = 266 kJ/mol
Knowing that 1 kJ = 1000 J, E = 266,000 J/mol
By Avogadro's number, 1 mol = 6.02x10²³ molecules, thus:
E = 266,000 J/mol * 1mol/6.02x10²³ molecules
E = 4.42x10⁻¹⁹ J/molecule
<span>Germanium is the element that has 32 protons in its nucleus.</span>
The protons in an nucleus of an atom will not change unless a nuclear reaction takes place. The number of protons is equal to the atomic number of the element. For a neutral atom, the number of electrons and protons are equal. When they are unequal, then the atom occurs as an ion. It will has a net charge with it. The ion O²⁻ has a net charge of negative positive 2 because it has 2 more electrons than its protons. Since neutral oxygen has 8 protons, then O²⁻ ion has 8 protons and 10 electrons.
Answer:
7.46 g
Explanation:
From the balanced equation, 2 moles of Mg is required for 2 moles of MgO.
The mole ratio is 1:1
mole = mass/molar mass
mole of 4.50 g Mg = 4.50/24.3 = 0.185 mole
0.185 mole Mg will tiled 0.185 MgO
Hence, theoretical yield of MgO in g
mass = mole x molar mass
0.185 x 40.3 = 7.46 g