answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Cerrena [4.2K]
2 years ago
15

Consider a general reaction A ( aq ) enzyme ⇌ B ( aq ) A(aq)⇌enzymeB(aq) The Δ G ° ′ ΔG°′ of the reaction is − 5.980 kJ ⋅ mol −

1 −5.980 kJ·mol−1 . Calculate the equilibrium constant for the reaction at 25 °C. K ′ e q = Keq′= What is ΔG for the reaction at body temperature (37.0 °C) if the concentration of A is 1.8 M 1.8 M and the concentration of B is 0.55 M ?
Chemistry
1 answer:
Grace [21]2 years ago
3 0

Answer : The value of K_{eq} is, 11.2

The value of \Delta G_{rxn} is -9.04 kJ/mol

Explanation :

The relation between the equilibrium constant and standard Gibbs free energy is:

\Delta G^o=-RT\times \ln K_{eq}

where,

\Delta G^o = standard Gibbs free energy  = -5.980 kJ/mol = -5980 J/mol

R = gas constant = 8.314 J/K.mol

T = temperature = 25^oC=273+25=298K

K_{eq}  = equilibrium constant  = ?

Now put all the given values in the above formula, we get:

\Delta G^o=-RT\times \ln K_{eq}

-5980J/mol=-(8.314J/K.mol)\times (298K)\times \ln K_{eq}

K_{eq}=11.2

Thus, the value of K_{eq} is, 11.2

Now we have to calculate the \Delta G_{rxn}.

The formula used for \Delta G_{rxn} is:

The given reaction is:

A(aq)\rightleftharpoons B(aq)

\Delta G_{rxn}=\Delta G^o+RT\ln Q

\Delta G_{rxn}=\Delta G^o+RT\ln \frac{[B]}{[A]}    ............(1)

where,

\Delta G_{rxn} = Gibbs free energy for the reaction  = ?

\Delta G_^o =  standard Gibbs free energy  = -30.5 kJ/mol

R = gas constant = 8.314\times 10^{-3}kJ/mole.K

T = temperature = 37.0^oC=273+37.0=310K

Q = reaction quotient

[A] = concentration of A = 1.8 M

[B] = concentration of B = 0.55 M

Now put all the given values in the above formula 1, we get:

\Delta G_{rxn}=(-5980J/mol)+[(8.314J/mole.K)\times (310K)\times \ln (\frac{0.55}{1.8})

\Delta G_{rxn}=-9035.75J/mol=-9.04kJ/mol

Therefore, the value of \Delta G_{rxn} is -9.04 kJ/mol

You might be interested in
PLEASE HELP!!! The image represents the reaction between a certain number of molecules of N2 and H2.
77julia77 [94]

Answer:

  • <u><em>The leftover reactant is the nitrogen gas, N₂.</em></u>

Explanation:

As per your description:

<u>1. Square on the left: N₂(g)</u>

  • 3 units of two joint circles: this represents 3 molecules of nitrogen gas, N₂(g).

<u>2. Square on the right: H₂(g)</u>

  • 3 units of two joint circles: this represents 3 molecules of hydrogen gas, H₂(g).

<u>3. Reaction</u>

If the maximum possible amount of NH₃ is formed during the reaction, you assume that the reaction goes to completion.

The chemical equation that represents the reaction is:

  • N₂(g) +  H₂(g) → NH₃(g)

Which must be balanced:

  • N₂(g) +  3H₂(g) → 2NH₃(g)

That means that 1 molecule (or 1 mol) of N₂(g) reacts with 3 molecules (or 3 moles ) of  H₂(g) to produce 2 molecules (or 2 moles) of NH₃(g).

Since, the squares show that there are 3 molecules of each reactant, the 3 molecules of hydrogen gas will be able to react with 1 molecule of nitrogen gas. When that happens, all the hydrogen gas is consumend and yet two molecules of nitrogen gas will remain unreacted. Hence, the nitrogen gas is the leftover reactant.

4 0
2 years ago
Read 2 more answers
Determine whether or not the mixing of each of the two solutions indicated below will result in a buffer.
WARRIOR [948]
Part A

75.0 mL of 0.10 M HF; 55.0 mL of 0.15 M NaF

This combination will form a buffer.

Explanation

Here, weak acid HF and its conjugate base F- is available in the solution

Part B

150.0 mL of 0.10 M HF; 135.0 mL of 0.175 M HCl

This combination cannot form a buffer.

Explanation

Here, moles of HF = 0.15 x 0.1 = 0.015 moles

Moles of HCl = 0.135 x 0.175 = 0.023

Since HCl is a strong acid and the number of HCl is higher than HF. This prevents the dissociation of HF and the conjugate base F- will not be available in the solution

Part C

165.0 mL of 0.10 M HF; 135.0 mL of 0.050 M KOH

This combination will form a buffer.

Explanation

Moles of HF = 0.165 x 0.1 = 0.0165 moles

Moles of KOH = 0.135 x 0.05 = 0.00675 moles

Moles of KOH is not sufficient for the complete neutralization of HF. Thus weak acid HF and its conjugate base F- is available in the solution and form a buffer

Part D

125.0 mL of 0.15 M CH3NH2; 120.0 mL of 0.25 M CH3NH3Cl

This combination will form a buffer

Explanation

Here, weak acid CH3NH3+ and its conjugate base CH3NH2 is available in the solution and form a buffer

Part E

105.0 mL of 0.15 M CH3NH2; 95.0 mL of 0.10 M HCl

This combination will form a buffer

Explanation

Moles of CH3NH2 = 0.105 x 0.15 = 0.01575 moles

Moles of HCl = 0.095 x 0.1 = 0.0095 moles

Thus the HCl completely reacts with CH3NH2 and converts a part of the CH3NH2 to CH3NH3+. This results weak acid CH3NH3+ and its conjugate base CH3NH2 is in the solution and form a buffer
5 0
2 years ago
If an aqueous solution of urea n2h4co is 26% by mass and has density of 1.07 g/ml, calculate the molality of urea in the soln
Ksju [112]
Answer is: molality of urea is 5.84 m.

If we use 100 mL of solution:
d(solution) = 1.07 g/mL.
m(solution) = 1.07 g/mL · 100 mL.
m(solution) = 107 g.
ω(N₂H₄CO) = 26% ÷ 100% = 0.26.
m(N₂H₄CO) = m(solution) · ω(N₂H₄CO).
m(N₂H₄CO) = 107 g · 0.26.
m(N₂H₄CO) = 27.82 g.
1) calculate amount of urea:
n(N₂H₄CO) = m(N₂H₄CO) ÷ M(N₂H₄CO).
n(N₂H₄CO) = 27.82 g ÷ 60.06 g/mol.
n(N₂H₄CO) = 0.463 mol; amount of substance.
2) calculate mass of water:
m(H₂O) = 107 g - 27.82 g.
m(H₂O) = 79.18 g ÷ 1000 g/kg.
m(H₂O) = 0.07918 kg.
3) calculate molality:
b = n(N₂H₄CO) ÷ m(H₂O).
b = 0.463 mol ÷ 0.07918 kg.
b = 5.84 mol/kg.
5 0
2 years ago
Read 2 more answers
What mass of methanol is combusted in a reaction that produces 112 L of Co2 at STP?
AlekseyPX

Answer

D 160g

Explanation:

<u>Write the equation:</u>

Combustion reactions use oxygen and release water and heat, so

  CH₃OH(g) + O₂(g) → CO₂(g) + H₂O(g)

Balance that:

  2CH₃OH(g) + 3O₂(g) → 2CO₂(g) + 4H₂O(g)

<u>Find moles of carbon dioxide:</u>

We need to know the number of moles of CO₂. This rxn is at STP, so at STP one mole of gas = 22.4 liters.

  112 L * 1 mol/22.4 L = <em>5 mol CO₂</em>

<u>Find moles of methanol:</u>

Based on the chemical equation, for every 2 mol methanol, there are 2 mol carbon dioxide. So for every 5 mol carbon dioxide, there are 5 mol methanol!

  5 mol CO₂ = 5 mol CH₃OH

Molar mass of methanol: 12.01 + 3*1.008 + 16.00 + 1.008 = <em>32.04 g/mol</em>

Moles of methanol: 5 mol * 32.04 g/mol = 160.2 g methanol

≈ 160 mol methanol

8 0
2 years ago
If honey has a density of 1.36 g/ml what is the mass of 1.25 qt reported in kilograms
yawa3891 [41]
Answer;
1.6 kg.

Solution;
 
The density is 1.36 g/ml;

The volume is 1.25 qt
However; 1 qt = 946.35 ml 

Mass is given by; density × volume;
    = 1.25 qts × 946.25 ml/qt × 1.36 g/ml =1609 g 
but; 1 kg = 1000 g
Hence the mass = 1609/1000 = 1.609 Kg or 1.61 (sig figs)

7 0
2 years ago
Other questions:
  • a square boat made from iron has overall dimensions of 2.00 cm x 11.0 cm x 11.0 cm. it has a mass of 213 g. what is its density
    8·2 answers
  • Which of the following would occur if solid nh4cl was added to an aqueous solution of nh3?
    13·2 answers
  • astronauts brought back 500 lb rock samples from the moon. how many kilograms did they bring back (1 kg = 2.20 lbs)
    12·2 answers
  • How many structures are possible for a trigonal bipyramidal molecule with a formula of ax3y2?
    15·1 answer
  • A car moves at a speed of 50 kilometers/hour. Its kinetic energy is 400 joules. If the same car moves at a speed of 100 kilomete
    10·1 answer
  • Show that the Newton has the units of mass times acceleration
    15·1 answer
  • How many molecules of CBr4 are in 250 grams of CBr4
    7·1 answer
  • Jane made this picture to represent a chemical reaction: Two circles, one white and the other gray are shown on the left. A smal
    10·2 answers
  • HELPP 20+ POINTS!!!
    12·1 answer
  • This unit discusses in detail the role of catalysts to lower the activation energy of reactions. The term catalyst appears in no
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!