Answer:
a. The original temperature of the gas is 2743K.
b. 20atm.
Explanation:
a. As a result of the gas laws, you can know that the temperature is inversely proportional to moles of a gas when pressure and volume remains constant. The equation could be:
T₁n₁ = T₂n₂
<em>Where T is absolute temperature and n amount of gas at 1, initial state and 2, final states.</em>
<em />
<em>Replacing with values of the problem:</em>
T₁n₁ = T₂n₂
X*7.1g = (X+300)*6.4g
7.1X = 6.4X + 1920
0.7X = 1920
X = 2743K
<h3>The original temperature of the gas is 2743K</h3><h3 />
b. Using general gas law:
PV = nRT
<em>Where P is pressure (Our unknown)</em>
<em>V is volume = 2.24L</em>
<em>n are moles of gas (7.1g / 35.45g/mol = 0.20 moles)</em>
R is gas constant = 0.082atmL/molK
And T is absolute temperature (2743K)
P*2.24L = 0.20mol*0.082atmL/molK*2743K
<h3>P = 20atm</h3>
<em />
<h3>Answer:</h3>
Formal Charge on Nitrogen is "Zero".
<h3>Explanation:</h3>
Formal Charge on an atom in molecules is calculated using following formula;
Formal Charge = [# of Valence e⁻s] - [e⁻s in lone pairs + 1/2 # of Bonding e⁻s]
As shown in attached picture of Hydroxylamine, Nitrogen atom is containing two electrons in one lone pair of electrons and six electrons in three single bonds with two hydrogen and one oxygen atom respectively.
Hence,
Formal Charge = [5] - [2 + 6/2]
Formal Charge = [5] - [2 + 3]
Formal Charge = 5 - 5
Formal Charge = 0 (zero)
Hence, the formal charge on nitrogen atom in hydroxylamine is zero.