<h3><u>Answer;</u></h3>
Cannon-Bard theory
<h3><u>Explanation</u>;</h3>
- <em><u>The idea that an emotion-arousing stimulus is simultaneously routed to the cortex and to the sympathetic nervous system is central to the Cannon-Band theory.</u></em>
- Cannon-Bard theory states that we feel emotions and experience physiological reactions such as sweating, trembling, and muscle tension simultaneously.
- The theory argues that we experience physiological arousal and emotion at the same time. The theory gives more attention to the role of thought or outward behavior as compared to James-Lange.
Answer:
B = CHCl2 + Cl2 --> CHCl3 + Cl
Explanation:
Free radical halogenation is a chlorination reaction on Alkane hydrocarbons. This involves the splitting of molecules into radicals/ unstable molecules in the presence of sunlight/ U.V light which ensures bonding of the molecules.
Free radical chlorination is divided into 3 steps which are:
The initiation step
The propagation step
The termination step
So in reference to the question, propagation step involves two steps.
The first step is where the molecule in this case the methylene chloride(CH2Cl2) loses a hydrogen atom and then bond with a chlorine atom radical to give a nethylwnw chloride radical and HCl.
The second step involves the reaction of this methylene chloride got in the first step with chlorine molecule to form trichloride methane and a chlorine radical.
You would find in the attachment the 2 step mechanism.
When ice melts, the physicals state changes from solid to liquid. The energy or the heat required (q) required to change a unit mass (m) of a substance from solid to liquid is known as the enthalpy or heat of fusion (ΔHf). The variables; q, m and ΔHf are related as:
q = m * ΔHf
the mass of ice m = 65 g
the heat of fusion of water at 0C = ΔHf = 334 J/g
Therefore: q = 65 g * 334 J/g = 21710 J
Now:
4.184 J = 1 cal
which implies that: 21710 J = 1 cal * 21710 J/4.184 J = 5188.8 cal
Hence the heat required is 5188.8 cal or 5.2 Kcal (approx)
I will solve this question assuming the reaction equation look like this:
<span>MnO2 + 4 HCl ---> MnCl2 + Cl2 + 2 H2O.
</span>
For every one molecule of MnO2 used, there will be one molecule of Cl2 formed. If the molecular mass of MnO2 is 87g/mol and molecular mass of Cl2 is <span> 73.0 g/mol, the mass of MnO2 needed would be:
Cl mass/Cl molecular mass * MnO2 molecular mass=
25g/ (73g/mol) * (87g/mol) * 1/1= 29.8 grams</span>