answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leona [35]
2 years ago
7

A 500.0 ml buffer solution is 0.10 m in benzoic acid and 0.10 m in sodium benzoate and has an initial ph of 4.19. part a what is

the ph of the buffer upon addition of 0.025 mol of naoh?
Chemistry
1 answer:
slavikrds [6]2 years ago
8 0
Initial moles of C₆H₅COOH = 500/1000 × 0.10 = 0.05mol
Initial moles of C₆H₅COONa = 500/1000 × 0.10 = 0.05 mol
initial pH = Pka + log([C₆H₅COONa/ moles of C₆H₅COOH)
4.19 = pKa + log(0.05/0.05)
→pKa = 4.19
C₆H₅COOH + NaOH → C₆H₅COONa ₊ H₂o
moles of NaOH added = 0.010 mol
moles of C₆H₅COOH = 0.05 - 0.025 = 0.025 mol
Final pH = pKa + log([C₆H₅COONa)/[ C₆H₅COOH])
=pKa + log(moles of C₆H₅COONa/moles of C₆H₅COOH)
= 4.19 + log(0.025/0.075)
4.29
You might be interested in
The concentration of Si in an Fe-Si alloy is 0.25 wt%. What is the concentration in kilograms of Si per cubic meter of alloy?
kodGreya [7K]

Answer : The concentration of Si in kilograms is, 19.55kg/m^3

Explanation :

As we are given that, the concentration of Si in an Fe-Si alloy is 0.25 wt% that means:

Weight of Si = 0.25 g = 0.00025 kg

Weight of Fe = 100 - 0.25 = 99.75 g = 0.09975 kg

Density of Si = 2.32g/cm^3=2.32\times 10^6g/m^3

Density of Fe = 7.87g/cm^3=7.87\times 10^6g/m^3

Now we have to calculate the concentration in kilograms of Si per cubic meter of alloy.

Concentration of Si in kilograms =  \frac{\text{Weight of Si in 100 g of alloy}}{\text{Volume of 100 g of alloy}}

Concentration of Si in kilograms =  \frac{\text{Weight of Si in 100 g of alloy}}{\frac{\text{Wight of Fe}}{\text{Density of Fe}}+\frac{\text{Wight of Si}}{\text{Density of Si}}}

Now put all the given values in this expression, we get:

Concentration of Si in kilograms = \frac{0.00025kg}{\frac{99.75g}{7.87\times 10^6g/m^3}+\frac{0.25g}{2.23\times 10^6g/m^3}}

Concentration of Si in kilograms = 19.55kg/m^3

Thus, the concentration of Si in kilograms is, 19.55kg/m^3

5 0
2 years ago
BRAINLIESTTT ASAP!!!
Stels [109]

While I am not the brainliest I can certainly answer.  

This was a chemical change because the chemical components were changed, a big giveaway to this was the fizzing, however the temperature rising was also another giveaway.

8 0
2 years ago
Read 2 more answers
If a 1.00 mL sample of the reaction mixture for the equilibrium constant experiment required 32.40 mL of 0.258 M NaOH to titrate
andrey2020 [161]

Answer:

The concentration of acetic acid is 8.36 M

Explanation:

Step 1: Data given

Volume of acetic acid = 1.00 mL = 0.001 L

Volume of NaOH = 32.40 mL = 0.03240 L

Molarity of NaOH = 0.258 M

Step 2: The balanced equation

CH3COOH + NaOH → CH3COONa + H2O

Step 3: Calculate the concentration of the acetic acid

b*Ca*Va = a*Cb*Vb

⇒with b = the coefficient of NaOH = 1

⇒with Ca = the concentration of CH3COOH = TO BE DETERMINED

⇒with Va = the volume of CH3COOH = 1.00 mL = 0.001L

⇒with a = the coefficient of CH3COOH = 1

⇒with Cb = the concentration of NaOH = 0.258 M

⇒with Vb = the volume of NaOH = 32.40 mL = 0.03240 L

Ca * 0.001 L = 0.258 * 0.03240

Ca = 8.36 M

The concentration of acetic acid is 8.36 M

6 0
2 years ago
5.00 g of hydrogen gas and 50.0g of oxygen gas are introduced into an otherwise empty 9.00L steel cylinder, and the hydrogen is
GenaCL600 [577]
1) Balanced chemical reaction:

2H2 + O2 -> 2H20

Sotoichiometry: 2 moles H2: 1 mol O2 : 2 moles H2O

2) Reactant quantities converted to moles

H2: 5.00 g / 2 g/mol = 2.5 mol

O2: 50.0 g / 32 g/mol = 1.5625 mol

Limitant reactant: H2 (because as per the stoichiometry it will be consumed with 1.25 mol of O2).

3) Products

H2 totally consumed -> 0 mol at the end

O2 = 1.25 mol consumed -> 1.5625 mol - 1.25 mol = 0.3125 mol at the end

H2O: 2.5 mol H2 produces 2.5 mol H2O -> 2.5 mol at the end.

Total number of moles: 0.3125mol + 2.5 mol = 2.8125 mol

4) Pressure

Use pV = nRT
n = 2.8125
V= 9 liters
R = 0.082 atm*lit/K*mol
T = 35 C + 273.15 = 308.15K

p = nRT/V  = 7.9 atm
3 0
2 years ago
Read 2 more answers
How many electrons are involved in one equivalent of oxidation-reduction?
kotegsom [21]

Answer:

1 electron is involved.

Explanation:

Hello,

In redox reactions, when therer's the necessity to know the involved equivalents, they equal the number of transferred electrons, in this case, since one equivalent is stated, one electron is transferred (involved).

Best regards.

3 0
2 years ago
Other questions:
  • Why is nonpoint source pollution potentially more harmful than point source pollution?
    7·2 answers
  • Al(s)+hcl(aq) → alcl3(aq)+h2(g). assume you have plenty of hcl and 6.0 mol of al. how many moles of h2 are formed?
    7·1 answer
  • Which statements about reducing sugars are true? D‑Glucose (an aldose) is a reducing sugar. The oxidation of a reducing sugar fo
    7·1 answer
  • One crystalline form of silica (SiO2) has a cubic unit cell, and from X-ray diffraction data it is known that the cell edge leng
    11·1 answer
  • Suppose a group of volunteers is planning to build a park near a local lake. The lake is known to contain low levels of arsenic
    13·1 answer
  • Two atoms bonded together will remain some distance apart, minimizing the Question 1 options: A) potential energy of the bond. B
    10·1 answer
  • 1. What are small-scale techniques in chemistry? <br>​
    11·1 answer
  • How are oxygen and<br> water molecules different<br> from argon and neon<br> molecules?
    10·1 answer
  • Alex's teacher showed him a model of gas particles in a sealed container. How should Alex change the model to show the particles
    9·1 answer
  • Movement of the ___<br> creates the London dispersion forces.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!