Answer: The molarity of solution is 0.231 M
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per liter of the solution.

where,
n = moles of solute
= volume of solution in L
Molar mass of
= 
moles of
= 
Now put all the given values in the formula of molality, we get


Therefore, the molarity of solution is 0.231 M
Answer:
3.1°C
Explanation:
Using freezing point depression expression:
ΔT = Kf×m×i
<em>Where ΔT is change in freezing point, Kf is freezing point depression constant (5.12°c×m⁻¹), m is molality of the solution and i is Van't Hoff factor constant (1 For I₂ because doesn't dissociate in benzene).</em>
Molality of 9.04g I₂ (Molar mass: 253.8g/mol) in 75.5g of benzene (0.0755kg) is:
9.04g ₓ (1mol / 253.8g) = 0.0356mol I₂ / 0.0755kg = 0.472m
Replacing in freezing point depression formula:
ΔT = 5.12°cm⁻¹×0.472m×1
ΔT = 2.4°C
As freezing point of benzene is 5.5°C, the new freezing point of the solution is:
5.5°C - 2.4°C =
<h3>3.1°C</h3>
<em />
Answer:
c. Bomb calorimetry
Explanation:
The hydrocarbons are combustibles, it means that they can react in a combustion reaction to release energy. To measure this amount of energy, it's necessary equipment that the reaction can be placed in a controlled way. The bomb calorimeter is this equipment, which is an adiabatic vessel, with water. The heat is calculated based on the increase in the water temperature.
The coffee-cup calorimetry is used to measure the heat of a dissolution reaction and the bomb manometry is used to measure the pressure.
The energy is transformed into kinetic energy which makes the substance to move. The law of conservation of energy which is the first law of thermodynamics states that in a closed system energy can neither be created nor destroyed but can change from one form to another
N2 + 3H2 ---> 2NH3
mass of N2 = 28g
mass of H2 = 2g
mass of NH3 = 17g
according to the reaction:
28g N2----------------- 3*2g H2
85,5g N2-------------------- x
x = 18,32g H2 >>> so, nitrogen is excess
according to the reaction:
2*3g H2---------------------- 2*17g NH3
17,3g H2 ------------------------- x
x = 98,03g NH3
<u>answer: 98,03g of NH3</u>