CaCO₃ + 2HCl = CaCl₂ + CO₂ + H₂O
n(CaCO₃)=m(CaCO₃)/M(CaCO₃)
n(CaCO₃)=13.00/100.09=0.1299 mol
Δm=13.00+52.65-60.32=5.33 g
m(CO₂)=5.33 g
n(CO₂)=5.33/44.01=0,1211 mol
w=0.1211/0.1299=0,9323 (93.23%)
Answer:
4.78 %.
Explanation:
<em>mass percent is the ratio of the mass of the solute to the mass of the solution multiplied by 100.</em>
<em></em>
<em>mass % = (mass of solute/mass of solution) x 100.</em>
<em></em>
mass of MgSO₄ = 50.0 g,
mass of water = d.V = (0.997 g/mL)(1000.0 mL) = 997.0 g.
mass of the solution = mass of water + mass of MgSO₄ = 997.0 g + 50.0 g = 1047.0 g.
<em>∴ mass % = (mass of solute/mass of solution) x 100</em> = (50.0 g/1047.0 g) x 100 = <em>4.776 % ≅ 4.78 %.</em>
Answer is A Access pictures of the area taken by satelites.
Explanation: Satelites are the only thing out of these four answers that does not requir power supply from the town. Hope it helped!
The Lewis structure of PF3 shows that the central phosphorus atom has one non bonding and three bonding electron pairs. In this compound each Phosphorus atom contributes 5 valence electrons while each fluoride contributes 7 valence electrons making a total of 26 valence electrons. The central Phosphorus atom forms single bonds with each of the fluoride atoms. Phosphorus, therefore ends up with a non-bonding pair since the fluoride atoms already have 8 electrons around them. <span />
The answer is strontium dihydrogen phosphate
That is strontium dihydrogen phosphate, is the compound containing the most hydrogen atoms per molecule or formula unit.
The formulas of the following compounds are as follows:
Hydrogen selenide H₂Se
Ammonium bromide NH₃Br
Strontium dihydrogen phosphate Sr(H₂PO4)₂
Sodium bicarbonate NaHCO₃
As it can be seen from the formula of strontium dihydrogen phosphate Sr(H₂PO4)₂
, that it contains the most hydrogen atoms per molecule or formula unit.