If the reaction is represented by:
PCl₃ + Cl₂ <-> PCl₅ (exothermic)
the mole fraction of chlorine in the equilibrium mixture will change according to the following:
Decrease the volume: decrease
Increase the temperature: increase
Increase the volume: increase
Decrease the temperature: decrease
Take note of the whole number beside each substance in the reaction because these will be used in the stoichiometric calculations below:
Molar mass of <span>k[ag(cn)2]:199 g/mol
Molar mass of Zn(Cn)2: 117.44 g/mol
Avogadro's number: 6.022</span>×10²³ molecules/mol
a.)
35.27 g*(1 mol/199 g)*(1 mol Zn(Cn)₂/ 2 mol K[Ag(CN)₂])*(6.022×10²³ molecules/mol) = <em>5.34×10²² molecules of Zn(Cn)₂</em>
b.)
35.27 g*(1 mol/199 g)*(1 mol Zn(Cn)₂/ 2 mol K[Ag(CN)₂])*(117.44 g/mol) = <em>10.41 g of Zn(Cn)₂</em>
Answer:
B) a helium nucleus moving at a velocity of 1000 mph
Explanation:
According to the De Broglie relation
λ= h/mv
h= planks constant
m= mass of the body
v= velocity of the body.
As we can see from De Broglie's relation, the wavelength of matter waves depends on its mass and velocity. Hence, a very small mass moving at a very high velocity will have the greatest De Broglie wavelength.
Of all the options given, helium is the smallest matter. A velocity of 1000mph is quite high hence it will have the greatest De Broglie wavelength.
Explanation:
Formula according to the radius ratio rule is as follows.

= 0.397
According to the radius ratio rule, as the calculated value is 0.397 and it lies in between 0.225 to 0.414. Therefore, it means that the type of void is tetrahedral.
Thus, we can conclude that the given compound is most likely to adopt closest-packed array with lithium ions occupying tetrahedral holes.