The age of painting was determined from the decay kinetics of the radioactive Carbon -14 present in the painting sample.
Given that the half life of Carbon-14 is 5730 years.
Radioactive decay reactions follow first order rate kinetics.
Calculating the decay constant from half life:
λ
=
= 
Setting up the radioactive rate equation:

Where 

k = decay constant = 

ln 0.125 = 
-2.079=
t=
= 17185 years
t = 17185 years
Therefore age of the painting based in the radiocarbon -14 dating studies is 17185 years
Answer:
The partial pressure of carbon dioxide is 22.8 mmHg
Explanation:
Dalton's Law is a gas law that relates the partial pressures of the gases in a mixture. This law says that the pressure of a gas mixture is equal to the sum of the partial pressures of all the gases present.
In this case:
Ptotal=Pnitrogen + Poxygen + Pcarbondioxide
You know that:
- Ptotal= 0.998 atm
- Pnitrogen= 0.770 atm
- Poxygen= 0.198 atm
- Pcarbondioxide= ?
Replacing:
0.998 atm=0.770 atm + 0.198 atm + Pcarbondioxide
Solving:
Pcarbondioxide= 0.998 atm - 0.770 atm - 0.198 atm
Pcarbondioxide= 0.03 atm
Now you apply the following rule of three: if 1 atm equals 760 mmHg, 0.03 atm how many mmHg equals?

Pcarbondioxide= 22.8 mmHg
<u><em>The partial pressure of carbon dioxide is 22.8 mmHg</em></u>
Answer:
P = 20.1697 atm
Explanation:
In this case we need to use the ideal gas equation which is:
PV = nRT (1)
Where:
P: Pressure (atm)
V: Volume (L)
n: moles
R: universal gas constant (=0.082 L atm / K mol)
T: Temperature
From here, we can solve for pressure:
P = nRT/V (2)
According to the given data, we have the temperature (T = 20 °C, transformed in Kelvin is 293 K), the moles (n = 125 moles), and we just need the volume. But the volume can be calculated using the data of the cylinder dimensions.
The volume for any cylinder would be:
V = πr²h (3)
Replacing the data here, we can solve for the volume:
V = π * (17)² * 164
V = 148,898.93 cm³
This volume converted in Liters would be:
V = 148,898.93 mL * 1 L / 1000 mL
V = 148.899 L
Now we can solve for pressure:
P = 125 * 0.082 * 293 / 148.899
<h2>
P = 20.1697 atm</h2>
In this question we need to find the new volume of the gas. Since we have been given the pressure and temperature change, we can used to combined gas law equation.

the parameters for 1st instance are given on the left side and parameters for the second instance are given on the right side of the equation
(319 mmHg x 0.558 L)/ 115 K = (215 mmHg x V)/387 K
V = 2.79 L
<u>Answer:</u>
P2 = 778.05 mm Hg = 1.02 atm
<u>Explanation:</u>
We are to find the final pressure (expressed in atm) of a 3.05 liter system initially at 724 mm hg and 298 K which is compressed to a final volume of 2.60 liter at 273 K.
For this, we would use the equation:

where P1 = 724 mm hg
V1 = 3.05 L
T1 = 298 K
P2 = ?
V2 = 2.6 L
T2 = 173 K
Substituting the given values in the equation to get:

P2 = 778.05 mm Hg = 1.02 atm